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1 Preliminaries

This talk primarily concerns the category of spectra, denoted Sp, and the category of

∞-groupoids, denoted S , which I’ll often refer to as spaces. I will implicitly be using

the ∞-categorical manifestations of these objects, in the sense of [Lur14,Lur09], but

specific knowledge of that formalism is not necessary in the slightest. Indeed, most

of the contents of this talk is essentially “classical.” This talk represents joint work

with Jack Morava [BM18]. It is also available on the arXiv at https://arxiv.org/

abs/1710.05992.

Remark 1.1. I won’t try to define the category of spectra but here are some important

facts about it:

1. Spectra are essentially the same as generalized homology theories, i.e. functors

from spaces to graded abelian groups h∗ : S → GrAb satisfying the Eilenberg-

Steenrod axioms.

2. Probably the most well-known spectrum is the one which represents singular

homology with coefficients in an abelian group X 7→ H∗(X;A), which we’ll

denote by HA. These are called Eilenberg-MacLane spectra. There is also the

stable homotopy groups functor X 7→ πst
∗ (X), denoted S, which approximates

the usual homotopy groups of spaces. Finally, there are the topological K-

theory functors, denoted KU and KO, for complex and real topological K-

theory. These last are more naturally cohomology theories, but every spectrum

gives both a homology and cohomology theory anyway.
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3. Spectra have a closed symmetric monoidal structure called the smash product,

often denoted ∧. The tensor unit for this structure is the sphere spectrum S,

the generalized homology theory for stable homotopy groups. For a spectrum

E I’ll denote the right adjoint to E ∧− by Map(E,−).

4. There is symmetric monoidal functor from pointed spaces to spectra, Σ∞ : S∗→
Sp. I might want to precompose with the free pointing functor S → S∗, in
which case I’ll write Σ∞+ .

5. Spectra have homotopy groups which roughly generalize the stable homotopy

groups of spaces. I’ll just write π∗ : Sp→ GrAb for this functor if we need it,

and whether I mean the homotopy groups of a spectrum or a space should be

clear from context.

6. By including spaces into spectra we can literally “represent” (co)homology

theories. Specifically, given a spectrum E, there are: the homology theory

associated to E which is computed as π∗(Σ∞+ X ∧ E); and the cohomology

theory associated to E, which is computed as π∗(Map(Σ∞+ X,E). In particu-

lar, π∗(Σ∞+ X ∧S) � π∗(Σ∞+ X) � πst
∗ (X), π∗(Map(Σ∞+ X,HA)) � H ∗(X;A) and

π∗(Σ∞+ X ∧HA) �H∗(X;A).

2 Thom Spectra

The sphere spectrum S has an infinite loop space of homotopy automorphisms which

I’ll denote by GL1(S). Its delooping, or classifying space, is BGL1(S). One of the

nice things about working with ∞-categories is that spaces, i.e. ∞-groupoids, and

∞-categories, are all on the same footing now. So BGL1(S) is just a special kind

of ∞-category (one in which all of the morphisms are equivalences), so it makes

sense to talk about functors out of it. And, indeed, there is a very special functor

BGL1(S)→Sp which describes the action of the homotopy automorphisms of S on

S itself. See [ABG+14] for more about this.

Definition 2.1. Given a space X and a map f : X → BGL1(S), write Mf for the

colimit of the composite functor X→ BGL1(S)→Sp.

Remark 2.2. In the case that X is connected we have X ≃ BΩX so the map X →
BGL1(S) describes an action of the ∞-group ΩX on S. In that case, I might write

S//ΩX for Mf since it is quite literally the (homotopy) orbits spectrum associated

to the action coming from ΩX→ GL1(S).
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Theorem 2.3 ([ABG+14]). The above notion of Thom spectrum recovers the classical

notion of the Thom spectrum associated to a stable spherical bundle. In particular:

1. If X ≃ BO and BO→ BGL1(S) is the J-homomorphism thenMJ = S//O ≃MO,

the spectrum of unoriented cobordism.

2. If X ≃ BU and BU → BO → BGL1(S) is the (delooping of the colimit of ) the

usual inclusion U (n)→O(2n), the resulting Thom spectrum is the complex cobor-

dism spectrum MU ≃ S//U .

3 Eilenberg-MacLane spectra as Thom spectra

Recall that π1(BO) �Z/2, whcih allows us to make the following definition:

Definition 3.1. Writing η : S1→ BO for the generator, let η : Ω2Σ2S1→Ω2Σ2BO→
BO be the map of E2-spaces generated by the adjunction between E2-spaces and

pointed connected spaces, i.e. the image of η under the isomorphismHomS∗(S
1,BO) �

Hom
E2
(Ω2S3,BO).

Theorem 3.2 (Mahowald [Mah79]). There is an equivalence of E2-ring spectra Mη ≃
HZ/2. Moreover, if p : Ω2(S3⟨3⟩) → Ω2S3 is the universal cover then there is an

equivalence of ring spectra M(ηp) ≃HZ.

Remark 3.3. Note that the above theorem can be interpreted as saying that HZ/2

and HZ are the cobordism spectra for manifolds whose stable normal bundles ad-

mits lifts:
Ω2S3 Ω2(S3⟨3⟩)

M BO M BO

η pη

Now let BB∞ = colimn(BBn), where Bn is the n-stranded braid group (which

includes into the (n+ 1)-stranded braid group by inserting an unbraided strand on

the right side). Then:

Theorem 3.4 (Cohen, [Coh78]). There is a commutative diagram

BB∞ BO

Ω2S3

ρ

θ
η
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in which ρ is the “underlying permutation map” BB∞ → BΣ∞ followed by the regular

representation BΣ∞→ BO, and θ is a homology equivalence.

Remark 3.5. Some consequences of Cohen’s theorem are the following:

1. We can think of HZ/2 as the quotient of the sphere spectrum by the infinite

stranded braid group S//B∞.

2. We can describe homology classes x ∈H∗(X;Z/2) as bordism classes (M,M
f
−→

X) in which M has a lift of its stable normal bundle:

BB∞

M BO

Cohen calls such lifts “braid orientations” and gives some examples of mani-

folds that are braid oriented (in particular, the so-called solvmanifolds).

This work is inspired by trying to give a similar interpretation for the case of

Ω2(S3⟨3⟩).

Construction 3.6. Consider the short exact sequence of groups

B0n B [Bn,Bn]
i
↪→Bn

w−→Z

where w is the “writhe” map taking a braid to the difference of its “left-over-right”

crossings and its “right-over-left” crossings. Note that w is of course also the abelianization

map of Bn. This induces a “fiber sequence” of monoidal categories

B
0 B

∐
n

BB0n
I−→BB

∐
n

BBn
W−−→

∐
n

BZ ≃N×Z

Note that I is a monoidal functor andW is braided monoidal.

The monoidal structures of B and B
0 are given by addition of natural numbers

and juxtaposition of braids. However, the braiding in B, in which n +m→ m + n

crosses n strands over m strands, has writhe nm, so B
0 is not braided monoidal.

As a result, when we take geometric realization and then group complete we get a

commutative diagram

ΩB|B0| Z

ΩB|B| Z× S1
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which is a (homotopy) pullback square but not of E2-spaces, only of E1 spaces.

To deal with this issue, we restrict to the base point components of each space

and use:

Theorem 3.7 (Segal). There are equivalences

ΩB|B| ≃Ω2S2 ≃Z×Ω2S3

Additionally, we have that the bottom horizontal map in the above pullback

diagram, ΩB|B| → Z × S1, is the 1-truncation Ω2S3 → Ω2S3⟨1⟩ ≃ S1 on each

connected component.

Now we have a pullback square of E2-spaces

ΩB|B0|0 ∗

Ω2S3 S1

This implies the following theorem:

Theorem 3.8 (B.-Morava). There is an equivalence of E2-spaces

ΩB|B0|0 ≃Ω2(S3⟨3⟩)

This is analogous Segal’s theorem: ΩB|B|0 ≃ Ω2S3. So then there is a natural

question about whether or not there is a version of Cohen’s theorem in this setting.

Specifically:

Question. Is there a homology equivalence between Ω2(S3⟨3⟩) and BB0∞, where B0∞ is
the colimit of the writhe-free braid groups B0n?

This would, for instance, give a description of integral homology classes as cobor-

dism classes of manifolds with “writhe-free braid orientations.”
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