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◮ Fix a morphism of discrete commutative rings
φ : R → S
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◮ Fix a morphism of discrete commutative rings
φ : R → S

◮ Descent theory answers the question: What information
do we need to study R-modules using S-modules?
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◮ Fix a morphism of discrete commutative rings
φ : R → S

◮ Descent theory answers the question: What information
do we need to study R-modules using S-modules?

◮ The answer is: descent data. Descent data lets us
“descend” information about S-modules to information
about R-modules.
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◮ Fix a morphism of discrete commutative rings
φ : R → S

◮ Descent theory answers the question: What information
do we need to study R-modules using S-modules?

◮ The answer is: descent data. Descent data lets us
“descend” information about S-modules to information
about R-modules.

◮ If we apply Spec(−) to our rings and think of our
modules as sheaves, then descent data manifests as
“gluing data.”
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Definition
A descent datum for a morphism of commutative rings
φ : R → S consists of:

◮ an S-module M

◮ an isomorphism (of S ⊗R S-modules),

θ : p∗0(M)
∼=
→ p∗1(M)

◮ a commutative diagram which constitutes the cocycle
condition:

p∗00(M) ∼= p∗01(M) p∗11(M) ∼= p∗12(M)

p∗10(M) ∼= p∗02(M)

p∗1 (θ) //

p∗0 (θ)

==③③③③③③③③③③③③③

p∗2 (θ)

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆
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There is a category of descent data.
It is the limit of the diagram:

(S ⊗R S)ModSMod (S ⊗R S ⊗R S)Mod//
//

//
//
//
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This diagram is just (−)Mod applied to the first three levels
of the Amitsur complex S/R•.

S ⊗R S

S

S ⊗R S ⊗R S

R

...

OO

OO OO

OO OO OO

(−)Mod
 

(S ⊗R S)Mod

SMod

(S ⊗R S ⊗R S)Mod

RMod

...

OO

OO OO

OO OO OO
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When does the category of descent data tell us about the
category of R-modules?

Definition
A morphism of rings R → S is said to be a descent morphism
if the functor RMod → limMod(S/R•) is fully faithful.
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When does the category of descent data tell us about the
category of R-modules?

Definition
A morphism of rings R → S is said to be a descent morphism
if the functor RMod → limMod(S/R•) is fully faithful.

Definition
A morphism of rings R → S is said to be an effective
descent morphism if the functor RMod → limMod(S/R•) is
an equivalence.
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When does the category of descent data tell us about the
category of R-modules?

Definition
A morphism of rings R → S is said to be a descent morphism
if the functor RMod → limMod(S/R•) is fully faithful.

Definition
A morphism of rings R → S is said to be an effective
descent morphism if the functor RMod → limMod(S/R•) is
an equivalence.

Example

Grothendieck showed that faithfully flat morphisms of
commutative rings are of effective descent.
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We’d like to classify all possible descent data on an
S-module M ∼= N ⊗R S for an R-module N.
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We’d like to classify all possible descent data on an
S-module M ∼= N ⊗R S for an R-module N.

Definition
Let φ : R → S be an effective descent morphism , and N an
R-module. Then a twisted form for N along φ is an
R-module N ′ such that N ′ ⊗R S ∼= N ⊗R S .

There is a set of twisted forms, denote it Twφ(N).
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We’d like to classify all possible descent data on an
S-module M ∼= N ⊗R S for an R-module N.

Definition
Let φ : R → S be an effective descent morphism , and N an
R-module. Then a twisted form for N along φ is an
R-module N ′ such that N ′ ⊗R S ∼= N ⊗R S .

There is a set of twisted forms, denote it Twφ(N).

Theorem (See e.g. Waterhouse)

If φ is an effective descent morphism then:

Twφ(N) ∼= Descφ(N ⊗R S)
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We can compute descent data and twisted forms using
cohomology.
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We can compute descent data and twisted forms using
cohomology.

Definition
For an R-module N, define Aut(N) : CRng\R → Group by
Aut(N)(S) = AutS(S ⊗R N).
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We can compute descent data and twisted forms using
cohomology.

Definition
For an R-module N, define Aut(N) : CRng\R → Group by
Aut(N)(S) = AutS(S ⊗R N).

Theorem (Ibid.)

The set of twisted forms for N along φ : R → S is in
bijection with the first (non-abelian) cohomology of the
cosimplical group Aut(N)(R/S•):

Aut(N)(S ⊗R S)Aut(N)(S) Aut(N)(S ⊗R S ⊗R S). . .//
//

//
//
//
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We can compute descent data and twisted forms using
cohomology.

Definition
For an R-module N, define Aut(N) : CRng\R → Group by
Aut(N)(S) = AutS(S ⊗R N).

Theorem (Ibid.)

The set of twisted forms for N along φ : R → S is in
bijection with the first (non-abelian) cohomology of the
cosimplical group Aut(N)(R/S•):

Aut(N)(S ⊗R S)Aut(N)(S) Aut(N)(S ⊗R S ⊗R S). . .//
//

//
//
//

We often call the above cohomology group the descent
cohomology of N.
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Sketch Proof:

◮ The module
p∗0(N) = (N ⊗R S)⊗S (S ⊗R S) ∼= N ⊗R S ⊗R S
supports a canonical descent datum given by twisting
the S factors:

can : p∗0(N ⊗R S)
∼=
→ p∗1(N ⊗R S).

◮ Any other descent datum φ gives an automorphism
after inverting can,

can−1 ◦ φ : p∗0(N ⊗R S)
∼=→ p∗0(N ⊗R S).

◮ A suitable automorphism can be composed with the
canonical descent datum to obtain a new descent
datum.
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To homotopy theory...

Definition (Lurie)

For φ : R → S, a map of E∞-ring spectra, the ∞-category
of descent data for φ is the totalization of the cosimplicial
∞-category (again based on the Amitsur complex):

(S ⊗R S)ModSMod (S ⊗R S ⊗R S)Mod . . .//
//

//
//
// ////////
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To homotopy theory...

Definition (Lurie)

For φ : R → S, a map of E∞-ring spectra, the ∞-category
of descent data for φ is the totalization of the cosimplicial
∞-category (again based on the Amitsur complex):

(S ⊗R S)ModSMod (S ⊗R S ⊗R S)Mod . . .//
//

//
//
// ////////

Homotopical descent data can be given as an invertible
1-cell and a sequence of higher homotopy cocycle conditions:



Descent
Cohomology &

Twisted Forms in
Homotopy

Jonathan
Beardsley

Classical Descent
Theory

Twisted Forms and
Descent
Cohomology

Homotopical
Descent (à la
Lurie)

Homotopical
Descent
Cohomology and
Applications

Applications

Definition
Under the assumptions given above, a descent datum for
φ : R → S is:

◮ an S-module M,

◮ an invertible 1-cell θ : p∗0(M)→ p∗1(M),

◮ a 2-cell

p∗00(M) ≃ p∗01(M) p∗11(M) ≃ p∗12(M)

m

p∗10(M) ≃ p∗02(M)

p∗1 (θ) //

p∗0 (θ)

==③③③③③③③③③③③③③

p∗2 (θ)

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆

◮ higher n-cells satisfying higher cocycle conditions...
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Definition
For a morphism of E∞-ring spectra φ : R → S, and an
R-module N, the space of twisted forms of N is the
homotopy limit of the cospan

RMod
−⊗RS−→ Descφ

N⊗RS←− ∗.
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Definition
For a morphism of E∞-ring spectra φ : R → S, and an
R-module N, the space of twisted forms of N is the
homotopy limit of the cospan

RMod
−⊗RS−→ Descφ

N⊗RS←− ∗.

Example

Along the morphism S→ MU, Σ∞
+ BU is a twisted form of

MU, as evidenced by the Thom isomorphism

MU ∧ Σ∞
+ BU ≃ MU ∧MU.
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Remark

◮ This generalizes the descent 2-category for 2-categorical
descent as studied by Ross Street, Claudio Hermida,
Lawrence Breen, and others.
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Remark

◮ This generalizes the descent 2-category for 2-categorical
descent as studied by Ross Street, Claudio Hermida,
Lawrence Breen, and others.

◮ Kathryn Hess describes descent data as a category of
comodules over a comonad. Her theory, if translated
into the language of ∞-categories, is equivalent to this
one.
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Theorem (Riehl, Verity)

For a homotopy coherent monad of quasicategories
T : C → C, the quasicategory of descent data is the
homotopy limit of the cosimplicial diagram of
quasicategories:

TTCTC TTTC . . .//
//

//
//
// ////////
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Theorem (Riehl, Verity)

For a homotopy coherent monad of quasicategories
T : C → C, the quasicategory of descent data is the
homotopy limit of the cosimplicial diagram of
quasicategories:

TTCTC TTTC . . .//
//

//
//
// ////////

Remark
For us, the homotopy coherent monad of interest is the
extension-of-scalars monad associated to φ : R → S .
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Theorem (B.)

Let φ : R → S be a morphism of E∞-ring spectra which is of
effective descent. Then for an R-module N, there is an
equivalence of ∞-categories:

Twφ(N) ≃ Descφ(N ⊗R S).
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Proof.
Compare these two homotopy pullback diagrams of
quasicategories. Since φ is of effective descent,
RMod ≃ Descφ so the pullbacks are equivalent.

Twφ(N) //

��

∗

N⊗RS

��
RMod

−⊗RS // SMod

Descφ(N ⊗R S) //

��

∗

N⊗RS

��
Descφ

proj // SMod
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◮ Similarly to the discrete case, we now want to
determine the space of twisted forms using some kind of
“cohomology.”

◮ However, since there is a space of twisted forms, we
need a Bousfield-Kan spectral sequence to get at this
information!

◮ For a given R-module N, the cosimplicial space of
interest is:

Aut(N)(S ⊗R S)Aut(N)(S) Aut(N)(S ⊗R S ⊗R S) . . .//
//

//
//
//

◮ Specifically we want to understand the data in
cohomological degree one (i.e. the homotopical
analogue of H1).
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Theorem (B.)

For a morphism of E∞-ring spectra φ : R → S and N an
R-module, the set of isomorphism classes of descent data on
N ⊗R S is equivalent to π0Tot(BAut(R/S

•)).

Remark
The Bousfield-Kan spectral sequence converges to the
homotopy of the above totalization:

πsπt ⇒ πt−sTot(BAut(R/S
•))

If our spaces are sets (e.g. 0-truncated) then π−1 of the
totalization recovers the first nonabelian cohomology
H1(R/S•;Aut(N)).
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Sketch of proof:

◮ Aut(−) corresponds to taking based loops of R/S• with
base point the canonical descent datum on N ⊗R S
(compare with Dwyer-Kan classification spaces).

◮ This forgets all other components and produces a
cosimplicial loop space, which admits a delooping by a
cosimplicial space.

◮ π0 of this delooping is precisely the set of descent data
on N ⊗R S .
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Remark

◮ If φ : R → S is a Galois (or Hopf-Galois) extension in
the sense of Rognes, the above construction can be
reinterpreted as homotopical Galois cohomology.

◮ In that case, a descent datum corresponds to an
(co)action of a (Hopf-)Galois (algebra) group.

◮ The spectral sequence is a homotopy (co)fixed points
spectral sequence.

◮ Tyler Lawson and David Gepner are doing computations
along these lines for the Galois extensions KO → KU.

◮ Vesna Stojanoska and Akhil Mathew are also doing
these kinds of computations for TMF → TMF (n).
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Thom Spectra

◮ We can get Thom spectra (e.g. MU, MΞ, X (n), MSp
etc.) by taking global sections of bundles defined by
functions f : X → BGL1(S) for X some space.
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Thom Spectra

◮ We can get Thom spectra (e.g. MU, MΞ, X (n), MSp
etc.) by taking global sections of bundles defined by
functions f : X → BGL1(S) for X some space.

◮ We can then ask about other bundles which are locally
equivalent along the “cover” S→ Mf .
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Thom Spectra

◮ We can get Thom spectra (e.g. MU, MΞ, X (n), MSp
etc.) by taking global sections of bundles defined by
functions f : X → BGL1(S) for X some space.

◮ We can then ask about other bundles which are locally
equivalent along the “cover” S→ Mf .

◮ For example: the trivial bundle S[X+] is locally
equivalent to Mf , and we call this local equivalence the
Thom isomorphism

Mf ∧ S[X+] ≃ Mf ∧Mf .

◮ Our machinery can compute other twists of such Thom
spectra (work in progress).
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Lurie)

Homotopical
Descent
Cohomology and
Applications

Applications

Gn-actions

◮ For the (profinite-)Galois extension LK(n)S→ LK(n)En a
descent datum corresponds to an LK(n)-module M and
an action of the Morava stabilizer group Gn on M.
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Gn-actions

◮ For the (profinite-)Galois extension LK(n)S→ LK(n)En a
descent datum corresponds to an LK(n)-module M and
an action of the Morava stabilizer group Gn on M.

◮ The BKSS above would compute actions of Gn on M.
Are there exotic actions?
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Gn-actions

◮ For the (profinite-)Galois extension LK(n)S→ LK(n)En a
descent datum corresponds to an LK(n)-module M and
an action of the Morava stabilizer group Gn on M.

◮ The BKSS above would compute actions of Gn on M.
Are there exotic actions?

◮ Compare with Goerss and Hopkins’ identification of the
moduli space of spectra X such that X ∧ En ≃ En ∧ En

as BAut(Gn) (note, this means it’s connected!).
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Gn-actions

◮ For the (profinite-)Galois extension LK(n)S→ LK(n)En a
descent datum corresponds to an LK(n)-module M and
an action of the Morava stabilizer group Gn on M.

◮ The BKSS above would compute actions of Gn on M.
Are there exotic actions?

◮ Compare with Goerss and Hopkins’ identification of the
moduli space of spectra X such that X ∧ En ≃ En ∧ En

as BAut(Gn) (note, this means it’s connected!).

◮ Fully developing this case requires dealing with
pro-spectra, see work of Daniel Davis, Gereon Quick,
Ethan Devinatz and others for some work in this
direction.
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Thanks to Andrew Salch, Jack Morava, Kathryn Hess and
Tyler Lawson for countless helpful discussions regarding this
material.
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