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Invariants and Classification

Many problems in mathematics are, at their core, problems of classification. Roughly,
given some class of mathematical objects C equipped with a notion of “isomorphism,”
we’d like to answer the following question:

1. Can we produce a complete set of invariants for C, i.e. given two objects
X,Y ∈C, two collections of data {Xi} and {Yi} such that X � Y if and only if
Xi � Yi for all i?

Of course one can always trivially take X and Y themselves to be the “invariants,”
but nothing is gained by doing this! In general we hope that the sets of invariants are
in some way simpler than the objects of C. Some classes of objects that have been
fully classified in this way are, for instance: 2-dimensional closed manifolds; algebraic
surfaces of 2 (complex) dimensions; finite simple groups; simple Lie algebras.

At its heart, algebraic topology has the same goal, i.e. to use invariants to
classify topological spaces with respect to some notion of isomorphism between them.
Initially one might attempt to classify topological spaces “up to homeomorphism,”
but considering how complicated topological spaces are, this is most likely forever
beyond the reach of human beings. One might then try to weaken the notion of
isomorphism being used and ask to classify topological spaces “up to homotopy.” As
far as we can tell, this is still effectively impossible, but we can at least make a start!

Roughly, the idea of algebraic topology is to produce algebraic homotopy invariants
of topological spaces. This is readily encoded using the language of category
theory. That is to say, an algebraic topologist’s goal is to produce, study, and
compute the outputs of functors F : T op → A which give isomorphic output for
homotopy equivalent topological spaces, where A is some category of “algebraic
objects,” e.g. groups, rings, sets, or graded versions of these things. For technical
reasons, and to avoid telling more lies than necessary, we will consider invariants
of pointed spaces in this talk, i.e. functors F : T op∗ →A which are invariant up to
pointed homotopy, but the distinction is not critical to understanding what follows.

Remark. An important thing to remember about invariants of any kind is that
complete invariants are quite rare. In other words, usually we can use invariants
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to tell objects apart, F(X) � F(Y ) ⇒ X � Y , but it’s not necessarily true that
F(X) � F(Y )⇒ X � Y .

You already know some examples of algebraic homotopy invariants of topological
spaces:

1. For each n, and any Abelian group A, we have an invariant Hn(−;A) : T op∗→
Ab, which we can take to be either (reduced) singular or cellular homology
with coefficients in A. For fixed A, we typically package these invariants into a
single functor H∗(−,A) : T op∗→ GrAb with codomain the category of graded
abelian groups.

2. Similarly, for any abelian group A, we can consider the graded abelian
cohomology groups H ∗(−,A) : T opop∗ → GrAb. If A is in fact a ring, we
get lucky with cohomology because it gives us more than just graded abelian
groups, it gives a functor to GrRng , the category of graded rings (using the
cup product).

3. Given a pointed space X, we can produce a pointed set π0(X) which is the set
of connected components of X (where the base point of π0(X) is the connected
component of the base point in X).

4. More generally, we can define an invariant π∗ : T op∗→ GrSet by the formula
πn(X) :=Map∗(Sn,X)/{homotopy}. Again we get lucky because when i > 0,
the set πi(X) is a group, and even better, when i > 1, πi(X) is an abelian
group! As a result, we often talk about the homotopy groups of the space X (where
the base point of X is typically left implicit). You may be familiar with the case
that i = 1, which is the fundamental group of X.

Remark. In general, we like to have invariants that have a lot of structure, because
we can use that structure to tell them apart. For instance, using cohomology with
coefficients in a ring, we can often produce isomorphic Abelian groups which are not
isomorphic as rings. Producing invariants with more and more structure (which is
still homotopy invariant) is a recurring theme in algebraic topology (cf. cohomology
operations, homology cöoperations

All of the above invariants respect homotopy equivalence, but none of them are
complete invariants (in fact, we don’t have any complete invariants of spaces-up-to-
homotopy besides the trivial ones). However, they all have nice properties that seem
like reasonable things to ask of homotopy invariants, e.g. they take direct sums of
spaces to direct sums of algebraic objects; when we have a fiber sequence of spaces
we get a long exact sequence of algebraic objects, and this makes them manageable,
and importantly, sometimes even computable! In a certain sense, homotopy groups
are the finest of all such invariants, in that if two spaces look the same to homotopy
groups then they will always look the same to every other invariant (I’m fudging the
details quite a bit here, but it’s morally true). Unfortunately, homotopy groups are
incredibly difficult to compute. We don’t even know what π∗(Sn) is for all spheres Sn.

As a result of homotopy groups being both powerful and very difficult to compute,
much of algebraic topology has been directed toward the following goals:
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• Compute the homotopy groups of spaces.

• If we’re unable to do that, find a simpler invariant that we can compute, and
see if we can leverage it to give us information about homotopy groups.

Remark. There are MANY more invariants than the examples above (in fact, probably

about 22
ℵ0 ). Some things to look up if you’re interested are:

• topological K-theory,

• cobordism theories,

• stable homotopy groups,

• elliptic cohomology (connections to number theory!),

• Brown-Peterson cohomology.

Representability and Eilenberg-MacLane Spaces

One direction of research in modern algebraic topology is to study the invariants
themselves rather than explicitly studying topological spaces (although all of this work
is still ultimately grounded in getting a better understanding of topological spaces).
One can think of this as doing something like “algebra parameterized by the category
of pointed spaces.” In other words, instead of studying, say, graded Abelian groups,
we study functors H : T op∗→ GrAb, so we are studying “families” of graded abelian
groups. Indeed, many of the standard constructions in abstract algebra, e.g. rings,
modules, tensor products, exact sequences, can be extended to this “parameterized”
world.

We’ll come back to “parameterized algebra” later, but first lets examine a property
that a functor may possess that makes it easier to understand: representability. Given
a functor between two categories F : C→D, we can ask that for any c ∈ C, we have
a (functorial, natural) isomorphism F(c) �HomC(c,d) for some fixed d ∈ C. In other
words, F is represented by the object d. This is a particularly useful property because
we can sometimes replace studying the functor F itself with studying the object d.
And this happens in a crucial example in algebraic topology.

Theorem. Let X be a pointed topological space and A an Abelian group. Then there is a
sequence of pointed spaces, denoted {BnA}, such that

Hn(X,A) �Map∗(X,B
nA)/{homotopy}

These spaces are called Eilenberg-MacLane spaces, and they have a number of
special properties:

• B0A ' A, and B1A is the so-called “classifying space” for A, i.e. the space with
the property that for any other space X, homotopy classes of maps X→ BA
are in bijection with principal A-bundles on X.
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• The homotopy groups of BnA are entirely concentrated in degree n, and in
that degree they are isomorphic to A itself, i.e. πn(BnA) � A and πi(BnA) � 0
for any i , n.

• The set Map∗(S1,BnA) has a natural topology on it and with this topology
Map∗(S1,BnA) ' Bn−1A.

Example. If we take A =Z then we have A � B0A �Z, B1A � S1, B2A �CP∞, and
then other spaces which don’t have special names. It may not be surprising that
B1Z � S1 if you consider that you want a space with the property that “loops” in it
recover the integers.

Spectra

It would require too much technical background to state here, but there is a famous
theorem called the Brown Representability Theorem which implies, more or less,
that every homotopy invariant of spaces which behaves, more or less, like singular
cohomology (this is given by an explicit list of conditions) is representable in the
above way, i.e. as a sequence of spaces. This leads us to studying the sequences of
spaces that arise in this way, and we call such sequences spectra. A related concept
that you might want to Google is that of an “infinite loop space,” which is roughly the
same data (Question: can you figure out from the previous section why such things
might be called infinite loop spaces?).

In particular, there is a category Sp of spectra which has several nice properties:

• There is a well behaved functor from pointed topological spaces into spectra:
Σ∞ : T op∗→ Sp.

• There is a well behaved functor from abelian groups into spectra: H : Ab→ Sp.

• Given two spectra E and E′ , there is a notion of “tensor product” so that E⊗E′
is another spectrum, and a notion of “internal hom” so that HomSp(E,E′) is
another spectrum.

• There is a “homotopy groups” functor πS∗ : Sp→ GrAb which behaves much
like the homotopy groups functor described above.

Crucially, every spectrum E gives a covariant “homology” functor E∗ : T op∗→
GrAb and a contravariant “cohomology” functor E∗ : T opop∗ → GrAb (and by Brown
Representability, every suitable homology and cohomology functor gives a spectrum)
by the following formulae:

E∗(X) := πS∗ (HomSp(Σ
∞X,E))

E∗(X) := π
S
∗ (Σ

∞X ⊗E)
In particular, by taking E =HA for some Abelian group A, we have HA∗(X) �

H ∗(X,A) and HA∗(X) �H∗(X,A). In other words, in a certain sense, homology and
cohomology are both “representable,” and so we can study the spectrum HA as an
object in its own right to better understand the invariants we obtain by taking HA∗(−)
and HA∗(−) of various spaces.
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My Work

In my research, for the most part, I study spectra. This often means doing category
theory! One of the nice facts about spectra is that they behave a lot like Abelian
groups (indeed, spectra can be thought of as a homotopy theoretic “enhancement” of
the category of Abelian groups in a very real way). As a result we can talk about ring
spectra, and module spectra which generalize the classical notions of modules and
rings. Doing this kind of algebra with spectra has come to be called derived algebra,
higher algebra, or “brave new algebra.” Particular interests of mine in this setting are:
Galois theory, descent theory, modules and comodules over Hopf algebras (this allows
me to say especially scary things like “spectral quantum group”), and deformation
theory.

Some References

There are a lot of books out there on algebraic topology and homotopy theory. The
canonical starting point is Hatcher’s book Algebraic Topology, with which I expect
most of you are familiar. There are lots of other references that can be used instead
of Hatcher’s book. What’s more important for our purposes is finding references
for after Hatcher. Luckily there are a few good ones that are freely available on the
internet:

• Davis and Kirk’s book Lecture Notes and Algebraic Topology, available here:
www.maths.ed.ac.uk/~v1ranick/papers/davkir.pdf,

• May’s A Concise Course in Algebraic Topology, available here: www.math.uchicago.
edu/~may/CONCISE/ConciseRevised.pdf and May and Ponto’s More Con-
cise Algebraic Topology, available here: www.math.uchicago.edu/~may/TEAK/
KateBookFinal.pdf,

• Adams’ Stable Homotopy and Generalised Homology, available here: people.

math.rochester.edu/faculty/doug/otherpapers/Adams-SHGH.pdf.
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