Some Galois Theory For Bordism Homology Jonathan Beardsley UNR Mathematics and Statistics Colloquium 10/15/2020

· describe G-bordism homology of spaces for varying group G redefine Galois extensions to allow for a more general class of examples · G-bordism homology is Galois over stable homotopy

Sordism Def'n: A bordism between n-manifolds M and N is an N+1-manifold P s.t. 2P=MUN. Ex: A bordism between S' and $C' \Pi S'$: s'ILS'

Stable Normal Bundle
-given an embedding of a manifold

$$M \subset \mathcal{R}^{k}$$

it has a non-unique normal bundle
it has a non-unique normal bundle
it bundle

HOWEVER: -if we let k get large enough, this bundle becomes unique up to isotopy -we call this the stable normal bundle of M -fhis is a real vector bundle whose structure group is infinite matrices $O:=\lim_{n} (O(n))$

-given a group map $G \rightarrow O$, we say M has a G-structure if we can reduce the structure group from O to 7BG $M \xrightarrow{N} BO$

G-Bordism

-we can now ask that our manifolds M, N, P all have G-structure and that the G-Structure on Prestricts fo that of M and N. now they're foldst

The Ring DG -now let $\Omega_n^G = (W/G structure)/$ where M~N:f there is a bordism between Mand N Remarkable: graded river, with IL as addition and X as multiplication! "mon "54

 $E \times :$ $\int_{x=1}^{\infty} \frac{2}{Z/2} \left[\chi_{i} \right] \left[i = 0, i \neq 2^{k} - 1 \right]$ Novikov $\Omega_{x} \approx \mathbb{Z}[\tilde{x}_{i} | i \ge 0, i = 2k]$ Wall; 60 Ω_{*}^{so} is complicated but known and $\Omega_{*}^{so} \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^{2i}|i7.0]$ Spin - don't know ring struct.! String not fully known!

Bordism Homology
Theories
-more generally, for a space X, define

$$\Omega_n^G(X) = \frac{(n-monifolds with 2)}{(G-structure over X)}$$

where $(M \not P \not X) \sim (N \not P \not X)$; if
there is a bordism between M
and N over X, $(P \not P \not X)$, which
restricts to q and q

Thm (Atiyah, '60): The sets $\mathfrak{L}_*(X)$ assemble into a generalized homology theory.

-in other words, a well-behaved machine

Top Schab grade jan gabe jan groups

-in particular $\mathcal{D}^{G}_{*}(pt.) \cong \mathcal{D}^{G}_{*}$

Rmk: Given a map of structure groups $H \rightarrow G$, we get a natural transformation $\Omega_{*}^{H}(-) \rightarrow \Omega_{*}^{G}(-)$ ("inducing up" the structure group)

A Very Special Cose

$$Q'n: What if G = \{e_{i}^{2}\}$$

-structure group is trivial, so all
Manifolds must be framed or
parallelized.
 $\int_{i}^{r} (X) \cong TC_{i}^{s}(X) = trivial$

Note: For any structure group G There is a map $\int_{*}^{fr} (\chi) \longrightarrow \int_{*}^{6} (\chi)$ (we can always think of e as an element of G)

Classically: There is a spectral sequence for "descending $\Omega_{*}^{G}(X)$ to obtain $\Omega_*^{fr}(X) \cong \pi_*^{s}(X)$. Novikov, 67 It's a vatuer complicated spectral spectral sequence Adams, '71

-each dot is a group -each line is a group homomorphism

Goal: Get a more conceptual understanding of the relationship between T_{\star}^{s} and Ω_{\star}^{s} .

Waldhausen, '78: Do algebra with the invariants of algebraic topology directly, rather than their actputs

I Jea: These maps assemble into a Galois extension of invariants, i.e. the Galois structure exists on the Functors themselves

Generalized Galois Extensions Kecall: A map of fields $q: L \rightarrow K$ is Galois, with Galois group G iff Gacts on K and $L^{\underline{v}} K^{G}$ where $K^{\underline{G}} = \{ k \in K | g k = k \ \forall g \in G \}$.

One reason this is useful: Galois Descent: We can learn about L-modules by studying K-modules and then taking G-fixed points Modr Modr (e.g. computing Picard groups)

-Now let L[G]*=Hom(L[G],L) be the dual of the group ring of G. Prop: $c_1: L \rightarrow K$ is G-Galois iff (exercise!) (i) $L[G]^*$ coacts on K:

 $T: K \longrightarrow K \otimes L[G]^*$

(22) K is an L[G]* "torsor": $K \otimes K \cong K \otimes L [G]^*$

(zii) L is the L[G]* cofixed points of K:

 $L \cong K^{\text{coll}GJ} = \{k \in K \mid G(k) = k \otimes 1\}$

More gonerally: Defin: Given a map of rings R=25 and a Hopf-algebra H, q is H-Galois if: (2) H coacts on Sover K (52) S& S \cong S \otimes H (iii) R=ScoH=fseS|SH>SOIJ allows for "Galois descent"

of Hopf-algebra cohomology

Thm (B.): The natural transformation $\int_{*}^{f_{*}} (-) \longrightarrow \int_{*}^{0} (-)$ is H-Galois for H= BG <u>Rmk</u>: BG is not a Hopf-abgebra! However, it is a bimonoid object of Topx:

diagonal of: BG->BGABG M: BGABG -> BG Tinherited from Gases) (in many cases) What does this mean for a fixed space X?

-coaction:

-torsor: $(\Omega^{G} \otimes \Omega^{G})(\chi) \cong \Omega^{G}(BG \wedge \chi)$ fensor product of invariants (Thom isomorphism)

. descent:

 $\mathcal{T}_{\mathbf{x}}^{s}(\mathbf{X})$ can be obtained as the derived cofixed points of $\Omega_{*}^{G}(X)$ w/r/t 166 coaction i.e. running the spectral sequence is computing (extremely complicated) Galois cohomology

Rmk: 13G is very much not the dual group ring of any kind of group, which is why we need to generalize Galois extensions.

Fundamental Theorem

More generally: Thm(B.): Given a fiber sequence of structure groups $H \rightarrow G \rightarrow G/H$, there is an intermediate extension: BG $\underbrace{ \sum_{\mathbf{x}}^{\mathrm{fr}}(-) \longrightarrow \underbrace{ \sum_{\mathbf{x}}^{\mathrm{H}}(-) \longrightarrow \underbrace{ \sum_{\mathbf{x}}^{\mathrm{G}}(-) \longrightarrow \underbrace{$ B(G/H)

EX: Whitehead tower of (`)-. 2 -> 1 String BString K(2,4) 3) Cfr ~ Spin Z L* K(Z/2,2) BSpin 1) 7 2. € $\mathbb{Z}/2,0)$ K(Z/2,1)