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These are notes for a talk I gave at Caltech on May 14th, 2025 at the Informa-
tion, Geometry and Physics Seminar organized by Matilde Marcolli and Yassine El
Maazouz. These are based on the papers [BN24] and [Bea25].

1 Γ-sets and Hyperoperations

Definition 1.1. A Γ-set is a pointed functor X : Fin∗ → Set∗ from the category of
finite pointed sets to the category of all pointed sets. From here on out I’ll take the
skeleton of Fin∗ spanned by the pointed set ⟨n⟩ = {∗, 1, 2, . . . , n} and all pointed
functions between them.

Connes and Consani use Γ-sets as a model for modules over the field with one
element [CC16; CC20; CC19]. I won’t lean too heavily on that in this talk, but it is
relevant since one way to interpret this work is that the F1-module associated to the
trivial projective geometry on a single point is the functor of Dynkin systems on finite
(pointed) sets (a.k.a. “set representable orthomodular posets”). This is all part of one
approach to making sense of Tits’ intuition about the field with one element in com-
binatorial settings (as opposed to arithmetic geometry a la Kapranov and Smirnov).

Definition 1.2. We name some useful functions in Fin∗.

1. Let αi : ⟨n⟩ → ⟨n − 1⟩ denote the function which is the identity on all j ≤ i and
takes j to j − 1 whenever j > i. In other words, it “merges” i and i + 1.

2. Let πi : ⟨n⟩ → ⟨1⟩ be the function that takes i to 1 and everything else to ∗. In
other words, πi is the function that “projects out” the ith coordinate.

3. Write ε : ⟨0⟩ → ⟨1⟩ for the inclusion of the base point and write η : ⟨1⟩ → ⟨0⟩
for the terminal morphism.

Remark 1.3. Note that by taking coproducts of the above functions one can describe
a copy of ∆op inside of Fin∗. For instance, the maps αi become the inner face maps.
This is equivalently the image of the simplicial circle ∆1/∂∆1 : ∆op → Fin∗ ⊂ Set∗.
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Example 1.4. Here’s a well-known example of a Γ-set. Let (M,+, 0) be the data of
a commutative monoid (in Set). Then there is a Γ-set HM which has: HMn = Mn;
HM(α1) : M2 → M the operation + of M; HM(πi) the projections Mn → M; and
HM(ε) the inclusion of 0. You can probably figure out what the rest of the functor
looks like on your own.

Let’s take a moment to see how functors out of Fin∗ might be good at modeling
commutative, unital, binary “operations.” Consider the following diagram in Set∗, for
X a Γ-set.

X2 X1 × X1

X1

X0

X(π1)×X(π2)

X(α1)

X(ε)X(η)

If we wanted to take two elements of X1, say (x, y) ∈ X1 × X1 and combine them
according to X, we could do the following: take their inverse image under X(π1)×
X(π2) to get a (possibly empty) subset of X2 and then apply X(α1) to get a subset
of X1. This defines a function X1 × X1 → P(X1) which we think of as a binary
hyperoperation on X1. Because X is a functor and α1 ◦ τ = α1 in Fin∗ (where τ is
the twist map on ⟨2⟩), this “operation” is necessarily commutative. Of course, when
X = HM the map is X(π1) × X(π2) is the identity, and this recovers the original
binary operation of M. The map X(ε) recovers the identity element, and functoriality
makes it all “work.”

Definition 1.5. Given a Γ-set X : Fin∗ → Set∗, write ⊞X : X1 × X1 → P(X1) for the
associated hyperoperation.

Remark 1.6. Note that if X(π1)× X(π2) is injective then the operation ⊞X is singly-
valued but not necessarily defined on all of X1. If, on the other hand, the map is
surjective, then the operation is defined everywhere but potentially multi-valued.

Definition 1.7. Given a Γ-set X, write ΣX
n : Xn → X1 × · · · × X1 for the product

morphism π1 × π2 × · · · × πn. Say that X is special if ΣX
n is an isomorphism for all

n. Note that the case of n = 0 is satisfied for all of our Γ-sets since we’ve assumed
pointedness.

Proposition 1.8. The construction M 7→ HM extends to a fully faithful functor H : CMon ↪→
ΓSet∗ whose essential image is the full subcategory of special Γ-sets.

The functor H is often called the Eilenberg-MacLane functor. We can embed
ΓSet∗ into ΓTop∗ and Segal showed that the latter can be used to model connective
spectra (i.e. cohomology theories with no negative degrees). The image of H is then
precisely the Eilenberg-MacLane spectra.

In this talk, however, the ability of Γ-sets to model hyperoperations is the focus.
If we enforced “specialness” we would lose all the examples of a more combinatorial
nature.
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2 Plasmas and Projective Geometries

Definition 2.1. Define a plasma to be a set X with a distinguished identity element
0 ∈ X and a hyperoperation ⋆ : X × X → P(X) satisfying the following conditions:

1. For all x, y ∈ X, x ⋆ y = y ⋆ x.

2. For x ∈ X, x ∈ x ⋆ 0.

A define a morphism of plasmas (X, ⋆, 0) → (Y,⊞, e) to be a function f : X → Y such
that f (x ⋆ y) ⊆ f (x)⊞ f (y). It’s straightforward to check that this gives a category
which we denote Plas.

Definition 2.2. Let (X, ⋆, 0) and (Y,⊞, e) be plasmas. Then we define their coprod-
uct (X ∨ Y,♡, [0]) to be the pointed set (X, 0) ∨ (Y, e) with the operation

x♡y =


x ⋆ y x, y ∈ X
x ⊞ y x, y ∈ Y
∅ else

Clearly the shared basepoint [0] remains a weak identity.

It’s not hard to check that the above construction makes X ∨ Y in the categorical
coproduct of Plas.

Proposition 2.3. If X is a Γ-set then the hyperoperation ⊞X : X1 × X1 → P(X1), along
with the identity element X(ε)(∗) ∈ X1, makes X1 into a plasma. In fact, this defines an
essentially surjective functor ΓSet∗ → Plas.

Example 2.4. Any Abelian (hyper)group or commutative (hyper)monoid of course
has an underlying plasma. An important example for us comes from taking the Kras-
ner hyperfield K = {0, 1} whose hyperaddition is given by the rules 0 + 0 = {0},
1 + 0 = 0 + 1 = {1} and 1 + 1 = {0, 1}. The multiplicative structure of K will not
be relevant in this talk.

Example 2.5. It one takes the inclusion functor Fin∗ ↪→ Set∗, which Connes and
Consani call s but think of as F1, the associated plasma structure on F1(⟨1⟩) = {0, 1},
has 0 as a strict identity element and 1 + 1 = ∅.

Example 2.6. Let S be a set. Then the powerset P(S) has a plasma structure accord-
ing to the rule:

A ⊎ B =

{
A ∪ B if A ∩ B = ∅
∅ if A ∩ B ̸= ∅

The following is not terribly hard to check.

Theorem 2.7. Let P(n) denote the power set of the set {1, 2, . . . , n}. Then by taking ⟨n⟩ to
P(n) and a map ϕ : ⟨n⟩ → ⟨m⟩ to the function ϕ−1 : P(m) → P(n), we obtain a functor
P : Finop

∗ → Plas.
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Corollary 2.8. There is a fully faithful right adjoint Ĥ : Plas → ΓSet∗ to the left Kan
extension depicted below which is corepresented by the functor P.

Finop
∗ Plas

ΓSet∗

よ

P

LanよP

You should compare this to the left Kan extension defining geometric realization
for simplicial sets. In that case, you’ve got a functor ∆ → Top that takes [n] to
the geometric n-simplex. You then left Kan extend this functor along the Yoneda
embedding よ : ∆ → Fun(∆op, Set) = sSet. The resulting functor sSet → Top takes
each simplex of the simplicial set to a geometric simplex and then glues them together
according to the face and degeneracy maps. The right adjoint to this is given by
mapping out of the cosimplicial object which in level n is the geometric n-simplex.

In the case of the above theorem, we have a functor which takes each ⟨n⟩ to the
plasma P(n), which we think of as the “basic building block” of the functor we’re
building. By then left Kan extending we’re saying that for a Γ-set X then: first you
should install a copy of P(n) for each “n-simplex” (which in this case is a morphism
out of a representable, よ⟨n⟩ → X); next you should glue these copies of P(n) to-
gether along the morphisms of Fin∗. The right adjoint Ĥ being corepresented by P

then means, among other things, that ĤAn = Plas(P(n), A). This is comparable to
computing the singular simplicial set of a space X by assembling the mapping sets
Top(∆n, X).

This can be summarized by saying that the adjunction LanよP : ΓSet∗ ⇄ Plas : Ĥ
is a kind of “nerve-realization” adjunction. An important point to make here, however,
is that the “realization” functor in this setting is a kind of truncation functor. It is very
close to the functor that takes a functor Fin∗ → Set∗ and restricts it to a functor on
the full subcategory spanned ⟨0⟩, ⟨1⟩ and ⟨2⟩. This is a kind of 2-coskeletonization
adjunction.

In any case, this means that ĤAn is relatively easy to compute for any fixed n. One
simply needs to compute the set of plasma morphisms P(n) → A. We will leverage
that to understand what Ĥ on a particular example of interest.

Another kind of object important to this talk is a projective geometry. There are
many definitions of projective geometries, some of which are equivalent, and others
of which define more or less general classes of object. We will use one of the three
definitions given in [FF00].

Definition 2.9. A projective geometry is a set G equipped with a ternary “collinearity”
relation ℓ ⊆ G × G × G satisfying the following conditions (where a, b, c, d, p, q are
points of G):

1. For every a and b, (a, b, a) ∈ ℓ.

2. If p ̸= q then (a, p, q) ∈ ℓ and (b, p, q) ∈ ℓ imply that (a, b, p) ∈ ℓ.
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3. If (p, a, b) and (p, c, d) are in ℓ then there is some q such that (q, a, c) ∈ ℓ and
(q, a, d) ∈ ℓ.

A morphism of projective geometries is a function G → H preserving collinearity.
Write Proj for the category of projective geometries.

Remark 2.10. For the purposes of [BN24], a projective geometry was defined as a
pointed, simple, finitary matroid satisfying the projective law. This is equivalent to
the above definition but requires significantly more axioms to describe.

Theorem 2.11 ([NR23]). There is a fully faithful inclusion

Φ : Proj ↪→ Plas.

In the actual paper, Reyes and Nakamura embed projective geometries into a
category of algebraic structures that they call mosaics. However, it’s pretty clear that
mosaics are a full subcategory of plasmas, so everything checks out.

The intuition behind that inclusion is roughly the following: given a projective
geometry G, define a closure operator P(G) → P(G) which takes a subset A ⊆
G to the smallest subspace containing A (where “subspace” means a collection of
points closed under collinearity); this defines a matroid which faithfully encodes the
geometry; since morphisms between projective geometries are typically only partially
defined functions, and we want actual functions, we append a disjoint basepoint and
then replace the closure operator with a hyperoperation encoding the same data.
When we start with a projective geometry, this construction is fully faithful. If we
were to start in the middle, with simple pointed matroids, it would only be faithful.

Corollary 2.12. The composite of Ĥ and Φ gives a fully faithful embedding

Θ : Proj → ΓSet∗.

A natural question then (at least for me) is to try to compute Φ and Θ for some
examples. To begin, I considered the simplest possible geometry: that with one point
and no lines. The next simplest, for me at least, are the “trivial” geometries of [FF00].

Definition 2.13. Let Gn denote the projective geometry with n elements and the
ternary relation ℓ ⊆ G3

n defined by saying (a, b, c) ∈ ℓ if and only if |{a, b, c}| ≤ 2. In
other words, there is a unique line through every pair of points and no other lines.

Remark 2.14. As closure spaces, the geometries Gn correspond to the closure op-
erators id : P(n) → P(n). In both cases it’s straightforward to check that their auto-
morphism groups are the symmetric groups. In other words, these are the canonical
“thin” geometries of Tits.

Theorem 2.15. The plasma Φ(Gn) is canonically isomorphic to the n-fold coproduct of K

with itself. In particular, Φ of the one point geometry is isomorphic to K.

Recall that Φ is fully faithful. Therefore the group of automorphisms of Φ(Gn)
should be Σn. It’s not hard to check that, indeed, AutPlas(∨nK) ∼= Σn. Also note that
Φ(Gn) is not ∨nF1. One could argue that Tits’ “field with one element” really was K,
and that F1 as Connes and Consani have defined it is somehow something deeper.
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3 Dynkin Systems

Extending the computation along Ĥ will involve Dynkin systems so let’s get that out
of the way. A good reference for these is [DW23], although they were first described
by Dynkin in [Dyn61].

Definition 3.1. Let X be a set and P(X) its power set. We say that a family A ⊆ P(X)
is a pre-Dynkin system if it satisfies the following:

1. ∅ ∈ A.

2. If U ∈ A then X − U ∈ A.

3. If U, V ∈ A and U ∩ V = ∅ then U ∪ V ∈ A.

If the third condition above can be extended to arbitrary countable collections of
mutually disjoint sets, we say that A is a Dynkin system (without the “pre-”).

Dynkin systems seem to show up in probabilistic situations when it’s not possible
to know whether or not things are happening “at the same time.” One might have well
defined probabilities for certain events in the system, but not know how to compute
the probability that they both happen. An important result about Dynkin systems is the
so-called πλ-theorem which says that if a Dynkin system is closed under intersections
then it is also closed under unions (hence a σ-algebra).

These things have also shown up in so-called “quantum logic.” A Dynkin sys-
tem on X is the same thing as what people call an orthomodular poset in P(X) (or a
“set-representable” orthomodular poset, since not all orthomodular posets can be em-
bedded in power set lattices). These generalize the orthomodular lattices that show
up in quantum mechanics as lattices of closed subspaces of Hilbert spaces, which go
back to Birkhoff and Von Neumann [BN36]. See also [Sup66; Gud69; Gud84]. It’s
not clear to me how relevant this kind of thing is in actually thinking about quantum
mechanical systems. According to Wikipedia at least, “modern philosophers reject
quantum logic as a basis for reasoning...”.

In any case, it’s not hard to see that Dynkin systems assemble into a functor out
of Fin∗. Write Dynkn for the set of Dynkin systems on the set ⟨n⟩.

Lemma 3.2. If ϕ : ⟨n⟩ → ⟨m⟩ is a function of pointed sets and A ⊆ P(⟨n⟩) is a Dynkin
system on ⟨n⟩, the family

ϕ∗A = {U ⊆ ⟨m⟩ : ϕ−1(U) ∈ A}

is a Dynkin system on ⟨m⟩. The assignments ⟨n⟩ 7→ Dynkn and (ϕ : ⟨n⟩ → ⟨m⟩) 7→
(ϕ∗ : Dynkn → Dynkm) define a functor Dynk : Fin∗ → Set∗.

Remark 3.3. Note that the functor Dynk doesn’t really care about the sets being
pointed. We could define it identically on Fin. However, the fact that its domain is
Fin∗ restricts the ways in which we can pass a Dynkin system from one set to another.

The primary theorem of this work, which I can prove but still don’t really under-
stand, is the following.
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Theorem 3.4. There is a natural isomorphism of Γ-sets

Φ(Gn) ∼= Ĥ(∨nK)
∼=−→ ∨nDynk

where the right-hand wedge sum denotes (object-wise) coproduct in Fun∗(Fin∗, Set∗).

In other words, the F1-module associated to the one-point trivial projective geom-
etry is the functor of Dynkin systems.
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