Topological Hochschild homology of X(n)

Jonathan Beardsley

July 7, 2015

Theorem 1. The spectrum X(n), which is the Thom spectrum of the inclusion $\Omega SU(n) \hookrightarrow \Omega SU \simeq BU \to BGL_1(\mathbb{S})$, is of characteristic η . In particular X(2) is the versal \mathbb{E}_1 - \mathbb{S} -algebra of characteristic η (as described in Definition 4.3 of [ACB14]).

Proof. We use [ACB14] in a crucial way. Recall that X(2) is the Thom spectrum of the inclusion $i: \Omega S^3 \simeq \Omega SU(2) \hookrightarrow BU \to BGL_1(\mathbb{S})$. Note that this morphism, as the inclusion of a subset of based loops on a group, ΩSU , is a two fold loop map, and as such a morphism of \mathbb{E}_2 -algebras in \mathcal{T} . Let \tilde{i} be the induced \mathbb{E}_1 -morphism. We have the following equivalences of mapping spaces:

 $map_{\mathbb{E}_1-alg}(\Omega \Sigma S^2, BGL_1(\mathbb{S})) \simeq map_{\mathcal{T}}(S^2, BGL_1(\mathbb{S})) \simeq map_{\mathcal{T}}(S^1, GL_1(\mathbb{S})).$

Since $\pi_1(GL_1(\mathbb{S})) \cong \pi_1(\mathbb{S}) \cong \mathbb{Z}/2$ we have that this map is either null homotopic or unique up to homotopy. In other words, \tilde{i} is homotopic to η , the generator of $\pi_1(\mathbb{S})$. Indeed, the preceding sequence of equivalences implies, by Theorem 4.10 of [ACB14], that $X(2) \simeq \mathbb{S}/\!\!/_{\mathbb{E}_1} \eta$, the versal \mathbb{E}_1 -algebra over \mathbb{S} of characteristic η . Moreover, as X(n) admits a morphism of \mathbb{E}_1 -ring spectra (actually of \mathbb{E}_2 -ring spectra) $X(2) \to X(n)$ for every n, we have that the X(n) must be an \mathbb{E}_1 - \mathbb{S} algebra of characteristic η . In particular, the composition $\Sigma \mathbb{S} \xrightarrow{\eta} \mathbb{S} \to X(n)$ is nullhomotopic.

Remark 1. Of course it's not necessary to use the machinery of characteristics of structured ring spectra to notice that η is trivial in $X(n)_*$, but the identification of X(2) as the versal \mathbb{E}_1 -S-algebra of characteristic η seems interesting in its own right.

Theorem 2. The topological Hochschild homology of X(n) as an \mathbb{E}_2 -ring spectrum, denoted here by THH(X(n)), is equivalent to $X(n) \wedge SU(n)_+$.

Proof. Here we use [BCS10] is a crucial way. In particular, we recall Theorem 2 of that paper which gives $THH(X(n)) = X(n) \wedge M(\eta \circ Bi)$, where $\eta \circ Bi$ here refers to the morphism

$$B\Omega SU(n) \simeq SU(n) \xrightarrow{B_i} B^2 GL_1(\mathbb{S}) \xrightarrow{\eta} BGL_1(\mathbb{S}).$$

Since X(n) is of characteristic η , we have that the composition $B^2GL_1(\mathbb{S}) \xrightarrow{\eta} BGL_1(\mathbb{S}) \to BGL_1(X(n))$ is nullhomotopic, where $BGL_1(\mathbb{S}) \to BGL_1(X(n))$ is just $BGL_1(-)$ of the unit map of X(n). This implies that $M(\eta \circ Bi)$ is X(n)-oriented, so by the associated Thom isomorphism we have $X(n) \wedge M(\eta \circ Bi) \simeq X(n) \wedge SU(n)_+$.

Conjecture 1. Recall that the morphism of \mathbb{E}_2 -ring spectra $X(n) \to X(n+1)$ is a Hopf-Galois extension with associated spectral Hopf-algebra ΩS^{2n+1} , though of as the base space of the fibration $\Omega SU(n) \to \Omega SU(n+1) \to \Omega S^{2n+1}$. Then the above results, as well as the results of [BCS10] suggest that one might have relative THH spectra:

$$THH_{X(n)}(X(n+1)) \simeq X(n+1) \wedge S_{+}^{2n+1}.$$

The first theorem above also suggests that there may be a morphism $\overline{\eta}$: $\Omega S^{2n+1} \to BGL_1(X(n))$ whose Thom spectrum is X(n+1) as an X(n)-algebra.

References

- [ACB14] Omar Antolín-Camarena and Tobias Barthel, A simple universal property of Thom ring spectra, 2014, arXiv:1411.7988.
- [BCS10] Andrew J. Blumberg, Ralph L. Cohen, and Christian Schlichtkrull, Topological Hochschild homology of Thom spectra and the free loop space, Geom. Topol. 14 (2010), no. 2, 1165–1242.