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Picard Spaces

This talk will be about the following structures, most of which are described in [ABG+14,ABG18]:

1. In general, (C,⊗, I) will be a symmetric monoidal∞-category. Often I’ll want to talk about an E∞-ring
spectrum R and C will be the ∞-category of left R-modules, LModR.

2. I’ll write Pic(C) for the maximal ∞-groupoid of C on the ⊗-invertible objects of C. Note that Pic(C)
is an ∞-groupoid and inherits a symmetric monoidal structure from C; in other words, it’s an infinite
loop space. Moreover there is a symmetric monoidal, faithful inclusion Pic(C) ↪→ C.

3. As constructed, Pic(C) has a canonical basepoint, namely I itself, and I’ll write BGL1(I) for the
connected component of this point. I’ll also write GL1(I) for Ω BGL1(I). This notation will make sense
in a second.

4. All of these spaces are infinite loop spaces so they have corresponding spectra pic(C), bgl1(I) and gl1(I).

Proposition 1 ([ABG+14]). There is an equivalence

Ω Pic(C) ' Ω BGL1(C) ' GL1(I)

where GL1(I) = AutC(I).

I’ll be focusing on a very special case of this construction:

Example 2. Let R be an E∞-ring spectrum and let C = LModR be its ∞-category of left modules. In this
case, I’ll write Pic(R) instead of Pic(LModR), along with BGL1(R) and GL1(R).

In this case, we have a really nice construction of the space of units:

Proposition 3 ([ABG+14]). There is a pullback of ∞-groupoids

GL1(R) Ω∞R

π0(R)× π0(R)

in which the right vertical arrow is projection onto connected components (or 0-truncation of the space).

Corollary 4. For a commutative ring spectrum R, π0(GL1(R)) ∼= π0(R)× and πi(GL1(R)) ∼= πi(R) for all
i > 0.

Note also that if R is non-connective (i.e. it has non-trivial negative degree homotopy groups) then
GL1(R) and GL1(R≥0) are equivalent, where R≥0 is the connective cover of R. This of course implies that
BGL1(R) ' BGL1(R≥0). However, in general, Pic(R) and Pic(R≥0) need not be equivalent.

Lemma 5. If R is a commutative ring spectrum then ΣiR is invertible for all i ∈ Z.
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The proof of this is to notice that

ΣiR⊗R Σ−iR ' Si ⊗R⊗R S−i ⊗R
' Si ⊗ S−i ⊗R
' R

Example 6. A good example of how Pic can be different a ring spectrum and its connective cover comes
from the complex K-theory spectrum KU and connective K-theory ku. Recall that KU is 2-periodic so
ΣiKU ' Σi+2KU for all i ∈ Z. This means that Pic(KU) has a 2-torsion element, namely ΣKU , since
ΣKU ⊗KU ΣKU ' Σ2KU ' KU .

On the other hand, ku is not periodic, so it’s got an infinite cyclic subgroup generated by Σku. This
doesn’t necessarily mean that Pic(KU) and Pic(ku) can’t be equivalent (maybe they’re both Z/2 ⊕ Z). In
this case however there’s a computation to be done, which shows that, indeed, π0(Pic(KU)) ∼= Z/2 and
π0(Pic(ku)) ∼= Z. This is given as an example in [MS16].

Example 7. There are lots of other computations of Picard groups (by which I mean π0 of Picard spaces)
that have been done:

• π0(Pic(S)) ∼= Z,

• π0(Pic(KO)) ∼= Z/8

• π0(Pic(TMF )) ∼= Z/576,

• π0(Pic(Tmf)) ∼= Z⊕ Z/24.

An area of active interest is trying to determine Pic(LnS), the chromatic localizations of the sphere
spectrum, for various primes. Some of these are known but to my knowledge there is still quite a bit to do
here.

R-line Bundles and Thom Spectra

Definition 8. Let X be an ∞-groupoid and R a commutative ring spectrum. Then an R-line bundle on X
is a map of ∞-groupoids f : X → Pic(R). Given such a map, we write Mf for the colimit of the composite
X → Pic(R) ↪→ LModR and call Mf the Thom spectrum of f . Note that Mf is in fact an R-module, not
just a spectrum.

Proposition 9. The above construction can be lifted to a colimit preserving functor M : S/Pic(R) → LModR.

Recall that S/Pic(R) is equivalent, by straightening, to the ∞-category Fun(Pic(R), S). This makes it
clear that there are two symmetric monoidal structures on it. These are the pointwise symmetric monoidal
structure which tensors two functors together object by object in S and the Day convolution monoidal
structure, which is a bit more complicated. These monoidal structures both have nice descriptions in S/Pic(R)

however. Given two maps X → Pic(R) and Y → Pic(R), their pointwise tensor product is given by the
pullback

X ×Pic(R) Y Y

X Pic(R)

and the Day convolution monoidal structure corresponds to the composite

X × Y → Pic(R)× Pic(R)→ Pic(R)

in which the final map is the group structure of Pic(R). We can say precisely what Ek-algebras are in both
of these categories.
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Lemma 10. The Ek-algebra objects of S/Pic(R) with respect to the pointwise monoidal structure are those
which factor through AlgEk

(LModR). With respect to the Day convolution monoidal structure, they are the
Ek-monoidal maps X → Pic(R).

The Thom spectrum functor preserves colimits but it does not generally preserve limits, so it’s not
monoidal with respect to the pointwise monoidal structure, however:

Theorem 11 ([ACB19]). The functor M : S/Pic(R) → LModR is symmetric monoidal with respect to the
Day convolution monoidal structure on S/Pic(R).

Corollary 12 ([Lew78]). If f : X → Pic(R) is a map of Ek-monoidal ∞-groupoids then Mf is an Ek-R-
algebra.

We have a good supply of interesting Thom spectra arising from cobordism spectra.

Example 13. Recall the so-called J-homomorphism J : O→ GL1(S) giving an action of the stable orthog-
onal group on the sphere spectrum. This admits a delooping, BO → BGL1(S) ↪→ Pic(S). We can then
compose this with Pic(S) → Sp to get a Thom spectrum. It is a result of [ABG+14], relying on the results
of [LMSM86], that the resulting spectrum is indeed MO, the unoriented cobordism spectrum. For any of
the classical maps BU→ BO, BSO→ BO, etc., we obtain the usual cobordism spectra, MU , MSO, etc.

Orientations

A useful fact to record here is the following:

Lemma 14. Let X be an ∞-groupoid, R a commutative ring spectrum, and A an R-algebra, and f : X →
Pic(R) a map of ∞-groupoids.

1. If f is nullhomotopic then Mf ' R⊗ Σ∞+ X.

2. If −⊗R A : Pic(R)→ Pic(A) denotes the map which is the restriction of the usual basechange functor
then M(f ⊗R A) 'Mf ⊗R A.

The two facts above aren’t too hard to prove if one is familiar with the relevant technology. The first
one is practically the definition of the way in which LModR is tensored over S, and the second is essentially
noticing that −⊗R A commutes with colimits.

Definition 15. Given a map of ∞-groupoids f : X → Pic(R) and an R-algebra A, we say that Mf is
A-oriented if the composite

X → Pic(R)→ Pic(A)

is nullhomotopic.

Proposition 16. The space of A-orientations of a Thom spectrumMf is equivalent to the space of R-module
maps Mf → A.

This immediately tells us that whenever f : X → Pic(R) is A-oriented there’s an equivalence Mf ⊗RA '
A ⊗ Σ∞X. But we can do a little bit better and actually identify the map that carries that isomorphism
(this is worked out in detail in [Bea]). First we’ll need an alternative description of orientations:

Proposition 17. The space of A-orientation ofMf is equivalent to the space of R-module maps u : Mf → A
with the following property:

Let Mx denote the Thom spectrum associated to the composition with an inclusion of a point x→ X →
Pic(R) and let ux denote the composite Mx → Mf → A (where Mx maps to Mf by functoriality of
the Thom spectrum functor). Note that Mx ' R. Then the composite

A 'Mx⊗R A
ux⊗A−−−−→ A⊗R A

µA−−→ A

is an equivalence, where µA is the multiplication map of A.
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This, combined with a little extra algebraic structure that we can put on Mf , lets us give a concrete
description of the Thom isomorphism.

Theorem 18. Let f : X → Pic(R) be a map of ∞-groupoids and A be an R-algebra.

1. If f is nullhomotopic then Mf ' R ⊗ Σ∞+ X is a cocommutative coalgebra in LModR. If X is an
Ek-space and f is Ek-monoidal then R ⊗ Σ∞+ X is a cocommutative bialgebra whose algebra structure
is Ek-monoidal.

2. For any f the Thom spectrumM is an R⊗Σ∞+ X-comodule with structure map ∆f : Mf → Σ∞+ X⊗Mf .

3. If Mf is A-oriented by an R-module map u : Mf → A then the composite

Mf ⊗R A
∆f⊗A−−−−→ Σ∞+ X ⊗Mf ⊗R A

X⊗u⊗A−−−−−→ Σ∞+ X ⊗A⊗R A
X⊗µA−−−−→ Σ∞+ X ⊗A

is an equivalence, called the Thom isomorphism. If f : X → Pic(R) is an Ek-map and u : Mf → A is
a map of R-algebras then the Thom isomorphism is a map of R-algebras.

A special case of the above is when Mf is an algebra map. Then the identity map Mf →Mf satisfies the
conditions of being an Mf -orientation. This gives us classical equivalences like, for instance, MU ⊗MU '
MU ⊗ Σ∞+ BU.

A Classical Example

It’s natural to ask why precisely I’m calling such things “orientations.” The basic idea is that it’s a way to
trivialize the R-line bundle by basechanging. This, to me, is a little bit confusing though, since, for instance,
oriented vector bundles aren’t necessarily trivial. The correct thing to say is that oriented vector bundles
are HZ-oriented, which is what I now want to explain.

First, recall that π0(Pic(S)) ∼= Z, so we have that Pic(S) ' Z × BGL1(S). Now suppose I’ve got a
real, finite dimensional vector bundle ξ : X → BO(n). This determines a map ξ̃ : X → Z × BO into the
n component which, by composition with the J-homomorphism, determines a map X → Pic(S), again
into the n-component. Note that this actually defines an Sn-bundle on X, since the n-component of Pic(S)
corresponds to the invertible S-module Sn. Now convince yourself that the colimit of this functor is Σ∞+n

+ Xξ,
the suspension spectrum of the Thom space of ξ. For instance, you can try to think about taking the
associated sphere bundle on X, taking fiberwise suspension spectra, and then taking the colimit.

To keep things simple, I’m going to desuspend this vector bundle by subtracting the trivial bundle from
it n times. This means that I get a map X → BO instead of {n} × BO. It also means that the resulting
Thom spectrum is just Σ∞+ X

ξ, instead of its n-fold suspension. These two constructions only differ by a
degree shift, so I’m not losing any information.

Now further suppose that ξ is oriented, i.e. there is a lift

BSO

X BO
ξ

along the simply connected cover of BO. Because I’m landing in BO, I now have a composite X → BSO→
BO→ BGL1(S). It’s a fact that GL1(HZ) ' Z× ' Z/2, so BGL1(HZ) ' K(Z/2, 1). So tensoring with HZ
gives a composite

X → BO→ BSO→ BGL1(S)→ BGL1(HZ) ' K(Z/2, 1)

Finally, recall that K(Z/2, 1) represents H1(−;Z/2) and that, for instance by the Hurewicz theorem,
H1(BSO;Z/2) ∼= 0. In other words, there are no non-nullhomotopic maps BSO→ K(Z/2, 1). Putting this all
together tells me that the Thom spectrum of the above composite (in LModHZ) is Σ∞+ X

ξ⊗HZ ' Σ∞+ X⊗HZ.
Taking homotopy groups then gives the classical Thom isomorphism

H∗(X
ξ;Z) ∼= H∗(X;Z)
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If you go look up “Thom isomorphism” on Wikipedia, you’ll see that there’s a degree shift in the above
isomorphism. I got rid of this when I shifted my vector bundle from {n}×BO to {0}×BO, but that wasn’t
strictly necessary.

Note that you could do the same thing with BGL1(HZ/2) ∼= B(∗) ' ∗ (the ring Z/2 doesn’t have very
many units!). In this case, every map X → BGL1(HZ/2) becomes contractible. It follows that every vector
bundle is oriented by Z/2-homology.

Torsor Structure

One of my favorite things about Thom spectra is that they have this structure that noncommutative ge-
ometers call a “Hopf-Galois extension,” which really just means that if you take Spec then you get a torsor
(cf. [Rog08]). Note that if you have a G-Galois extension of fields (or rings) then taking Spec gives a G-torsor
over Spec of the base field. This is a partial answer to why these things are called Hopf-Galois extensions.
Here’s the definition of torsor in the simplest case:

Definition 19. Let X → Y be a map of sets and G be a group acting on X over Y , i.e. such that the
following diagram commutes

X ×G X

Y

.

We say that X is a G-torsor over Y if the map

X ×G ∆X×G−−−−→ X ×Y X ×G→ X ×Y X

is an isomorphism, where the last map is the action of G on X.

If you let Y be the one element set in the above definition then you get precisely that G acts freely and
transitively on X. If you replace X and Y with spaces then you’ll get precisely the definition of a principal
G-bundle on Y . You can also rewrite the definition above for schemes, and you’ll get the notion of a G-torsor
in algebraic geometry.

Now note that for a Thom spectrum Mf associated to an E∞-map f : X → Pic(R) (hence a commutative
R-algebra) we have the two following data:

1. A coaction

Mf
∆f−−→ Σ∞+ X ⊗Mf

2. An equivalence

Mf ⊗RMf
∆f⊗Mf−−−−−→ Σ∞+ X ⊗Mf ⊗RMf

X⊗µMf−−−−−→ Σ∞+ X ⊗Mf

Recall also that Σ∞+ X ⊗R is a (co)commutative R-bialgebra, so Spec(Σ∞+ X ⊗R) is an affine (spectral)
Abelian group scheme over Spec(R). So Thom spectra have this very natural “algebro-geometric” structure.
Note that when X → Pic(R) is only Ek-monoidal, you can’t sensibly take Spec because you’re not dealing
with commutative rings (you can take the opposite category but then tensor products don’t turn into
Cartesian products, so things behave very strangely). However, you can still write down the above data and
try to do noncommutative geometry.
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[ACB19] Omar Antoĺın-Camarena and Tobias Barthel, A simple universal property of Thom ring spectra, J. Topol. 12 (2019),
no. 1, 56–78. MR3875978

[Bea] Jonathan Beardsley, On bialgebras, comodules, descent data and Thom spectra in ∞-categories. Forthcoming in
Homotopy, Homology and Applications.

[Lew78] L.G. Lewis, The stable category and generalized Thom spectra, Ph.D. Thesis, 1978. The University of Chicago.

[LMSM86] L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes
in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR866482

[MS16] Akhil Mathew and Vesna Stojanoska, The Picard group of topological modular forms via descent theory, Geom.
Topol. 20 (2016), no. 6, 3133–3217. MR3590352

[Rog08] John Rognes, Galois extensions of structured ring spectra/Stably dualizable groups, Mem. Amer. Math. Soc. 192
(2008), no. 898, viii+137. MR2387923

6


