Group Theory for ∞ -Groups UIUC Topology Seminar

Jonathan Beardsley

December 5, 2023

1 Background

This talk represents joint work with Landon Fox. This work builds on concepts introduced by K. Hess, E. Farjoun and especially M. Prasma.

Definition 1. An ∞ -group is a grouplike \mathbb{E}_1 -monoid in S. Write Grp for the ∞ -category of ∞ -groups.

Definition 2. Let X be a space and G an ∞ -group. A G action on X is a functor $\rho: BG \to S$ with $\rho(*) \simeq X$. We define the quotient space X/G to be $colim(\rho)$.

Theorem 3 (May, Stasheff). The functor $\Omega: S_*^{\geq 1} \to \operatorname{Grp}$ is an equivalence whose inverse is the delooping functor B.

Lemma 4. Let G be an ∞ -group. Then G acts canonically on itself by a functor can_G: BG \rightarrow S whose associated cocartesian fibration is $* \simeq EG \rightarrow BG$.

Remark 5. Note that a *G*-action on *X* corresponding to a functor $\rho: BG \to S$ is the same data, by the Grothendieck construction, as a Kan fibration $E \to BG$ with fiber equivalent to *X*.

Proposition 6. Let $\rho: BG \to S$ be a G-action on a space X with associated fiber sequence $X \to E \xrightarrow{\pi} BG$. Then $X/G = colim(\rho) \simeq E$.

Proof. Note that the fibration $\pi: E \to B$ associated to the action corresponds to the pullback of the universal fibration:

$$E \longrightarrow U_{\mathbb{S}}$$
$$\downarrow^{\pi} \qquad \downarrow$$
$$BG \longrightarrow \mathbb{S}$$

In general, given a cocartesian fibration $F \to Z$ with corresponding functor $Z \to Cat_{\infty}$, the latter has colimit equivalent to F with its cocartesian morphisms inverted. However, in this case, because $E \to BG$ is a Kan fibration (of ∞ -groupoids), every morphism in E is already invertible, so $colim(\rho) \simeq E$.

Corollary 7. Let $\phi: H \to G$ be a morphism of ∞ -groups and $\operatorname{can}_G \circ B\phi: BH \to BG \to S$ be the associated action of H on G. Then there is an equivalence $G/H \simeq fib(B\phi)$ and a fiber sequence $H \to G \to G/H \to BG \to BG$.

2 Normality Data

Definition 8. Let $\phi: H \to G$ be a morphism of ∞ -groups. A normality datum for ϕ is a morphism $\nu: BG \to X$, with X a pointed connected space, whose fiber $F \to BG$ is equivalent to $B\phi: BH \to BG$. In light of the preceding proposition we will write G/H for ΩX whenever ν is a normality datum for $G \to H$.

Remark 9. It is possible for a map $\phi: H \to G$ to have more than one normality datum. Note that normality data for the terminal ∞ -group map $G \to *$ are in bijection with \mathbb{E}_2 -structures on G. Therefore the map $G \to *$ can have more than one normality datum. There are more complicated examples as well.

Remark 10. A normal map $H \to G$ is the same data as a local system on BG whose fiber is a loop space.

Definition 11. Let $\phi: X \to Y$ be a morphism of spaces. Then we write its unique epi-mono factorization as $X \to im(\phi) \to Y$. Recall that $X \to im(\phi)$ is a surjection on π_0 and $im(\phi) \to Y$ is the inclusion of the connected components of Y in the image of $\pi_0 \phi$.

Theorem 12 (First Isomorphism Theorem). Let $\phi: H \to G$ be a morphism of ∞ -groups. Then

- 1. There is a group map $im(\phi) \to G$.
- 2. The fiber $fib(\phi): F \to H$ admits a normality datum such that $im(\phi) \simeq H/F$.

Proof. For the first statement, note that we can construct $im(\phi)$ as the pullback below:

This is a pullback in Grp and agrees with the pullback of underlying spaces. This gives a unique factorization

For the second statement, consider the factorization of ∞ -group maps $H \to im(\phi) \hookrightarrow G$. Because ϕ is a group map, $im(\phi)$ must contain the base point, i.e. the group identity, of G. It follows that $H \to G$ and $H \to im(G)$ have equivalent fibers. Therefore there is a fiber sequence of ∞ -groups $F \to H \to im(\phi)$. Delooping gives $BH \to Bim(\phi)$, which is the desired normality datum for $fib(\phi)$.

Remark 13. There is a natural interpretation of the Second Isomorphism Theorem, but it is false. It may be the case that there is a more clever restatement of it for ∞ -groups that is true. However, recall that the Second Isomorphism Theorem *does not* hold for topological groups.

Remark 14. The natural way to state the Third Isomorphism Theorem would be as follows: suppose that we have maps of ∞ -groups $\phi: K \to G$ and $\psi: H \to G$ with normality data ν and η respectively such that ϕ factors through ψ via some $\theta: K \to H$. Then:

- 1. There is a canonical normality datum for the composite $\theta: K \to H$.
- 2. There is a canonical normality datum for $H/K \to G/K$ such that $(G/K)/(H/K) \simeq G/H$ is an equivalence of ∞ -groups.

There is clearly an action of K on G and if we assume that K is normal in H then one can show that there is also an action of H/K on G/K. Using this structure there is an equivalence $(G/K)/(H/K) \simeq G/H$ of spaces. However, it is not clear that, a priori, there should be any normality datum for the map of ∞ -groups $H/K \to G/K$, which would be necessary for asking whether or not that equivalence lifts to one of ∞ -groups.

3 Orbits and Stabilizers

Remark 15. Let $F: BG \to S$ be a *G*-space, hence F(*) = X is "the space" on which *G* is acting. The corresponding Kan fibration is then the fiber sequence $X \to E \to BG$, for some space *E*. By Proposition 6 we know that $E \simeq X/G$.

The action of G on X, from this point of view, is the monodromy action of $\Omega BG \simeq G$ on the fiber. In particular, if we choose a 0-simplex $x \in X$ and demand that $X \to E$ be pointed (thereby determining a base point in E), we can take another fiber to obtain a fiber sequence $G \to X \to E$. This should be thought of as the principal G bundle coming from pulling back the universal G-bundle along $E \to BG$:

Note that the construction in Remark 15 relied on a choice of base point $x \in X$.

Definition 16. Let $x \in X$ be a 0-simplex in a *G*-space *X*, and let $G \to X \to E$ be the resulting fiber sequence. The we write Orb_x for the image of the map $G \to X$ so constructed.

The intuition behind calling this space the "orbits" of $x \in X$ is as follows. A choice of $x \in X$ induces a choice of base point $e \in E$. But E = X/G, so the fiber of $X \to E$ over e is all points of X which can be translated to x via the G-action. Indeed, the map $G \to X$ constructed by taking the fiber is, at the level of 0-simplices, the map that takes $g \in G$ to $gx \in X$. Therefore the image of $G \to X$ is the connected components of X which are "hit" by translating x.

Remark 17. Taking "images" in higher mathematics feels unnatural. For instance, if X is connected then $Orb_x = X$ for any point $x \in X$. It may be that there is a subtler notion of "orbits" which is more satisfying. For the time being however, we are able to show that our chosen space of orbits is equivalent to a reasonable construction of a "stabilizer group."

Definition 18. Let $X \to E \to BG$ be a *G*-action on *X* and choose a zero simplex $x \in X$ determining a 0-vertex $e \in E$. Then we define the stabilizer group $Stab_x$ to be $\Omega_e E = \Omega_e X/G$.

Proposition 19 (Orbit-Stabilizer). Let $X \to E \to BG$ be a G-action on a space X and let $x \in X$ be a 0-simplex. Then there is an equivalence $G/Stab_x \simeq Orb_x$.

Proof. Note that by definition we have a fiber sequence

$$Stab_x = \Omega_e X/G \to G \to X \to E \to BG.$$

Therefore we have a fiber sequence $Stab_x \to G \to X$. It follows that, since fibers only depend on the base point component, there is a fiber sequence $Stab_x \to G \to Orb_x$. The proposition then follows from Proposition 6.

4 Normal Closure

Suppose that $\phi: H \to G$ is a map of ∞ -groups. We may ask if there is a universal "normal closure" of H through which ϕ factors, i.e. an ∞ -group map $\tilde{\phi}: \tilde{H} \to G$ such that if $H \to N \to G$ is a factorization of ϕ and $N \to G$ is normal then there is a factorization $H \to \tilde{H} \to N$ over G.

In classical group theory, if $H \to G$ is an injection of groups then the pushout

taken in the category of ordinary groups, presents Z as G/ncl(H), where ncl(H) is the smallest normal subgroup of G containing H. We will ask for cofibers in G provides the same meaning. The challenge is only to extract ncl(H) from G/ncl(H).

Remark 20. Suppose we are given an ∞ -group G and map of ∞ -groups $\phi: G \to K$. Then we can produce a normal map $fib(\phi) \to G$ of ∞ -groups (whose associated normality datum is $BG \to BK$). Conversely, given a normality datum $BH \to BG \to Z$ for some $H \to G$, we can produce a map $G \to \Omega Z$. In other words, the normality data for $H \to G$ are precisely the ways in which $H \to G$ can be a fiber of a group map. That motivates the following definition of the *category* of normal maps to G.

Definition 21. Let G be an ∞ -group. We define Sub(G) to be the slice category $\operatorname{Grp}_{/G}$ and Nml(G) to be the coslice category $\operatorname{Grp}^{\backslash G}$.

Proposition 22. There is an adjunction between Sub(G) and Nml(G) whose left adjoint ncl: $Sub(G) \rightarrow Nml(G)$ is given by taking the cofiber (in Srp) and whose right adjoint is given by taking the fiber (again in Srp).

Remark 23. We can reinterpret the above adjunction as being between $(S_*^{\geq 1})_{/BG}$ and $(S_*^{\geq 1})^{\setminus BG}$. Given a group map $H \to G$, we deloop it to get $BH \to BG$. We then take the cofiber in $S_*^{\geq 1}$ (which is the same as taking the cofiber in \mathcal{G} rp and then delooping) to get

Now taking the fiber of the map $BG \to X$ gives a map $F \to BG$ and we take $BG \to X$ to be the normality datum for the group map $\Omega F \to G$. Then ΩF is the normal closure of $H \to F$.

Example 24. Taking G = *, one computes that the normal closure of an ∞ -group $H \to *$ is $\Omega^2 \Sigma B H$. This is the free \mathbb{E}_2 -space on the \mathbb{E}_1 -algebra H. Indeed, note the following equivalence of mapping spaces:

 $Map_{\mathbb{E}_2}(\Omega^2 \Sigma BH, Z) \simeq Map_{\mathbb{S}}(\Sigma BH, B^2 Z) \simeq Map_{\mathbb{S}}(BH, BZ) \simeq Map_{\mathbb{E}_1}(H, Z)$

Proposition 25. The adjuction of the preceding proposition is monadic. In particular, normality data for a group map $H \to G$ are in bijection with algebra structures on $H \to G$ with respect to the above adjunction.