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Abstract

We reprove Lazard’s result that every commutative n-bud is extendible

to an n+ 1 bud, from an obstruction theoretic point of view. We locate

the obstruction to extending an arbitrary n-bud in a certain cohomol-

ogy group, and classify isomorphism classes of n-bud extensions for low

degrees.

1 Lubin-Tate cohomology

Definition 1. Let R be a commutative, unital ring and F a formal group law
on R (associated to a formal group G). We define the Lubin-Tate cosimplicial
ring of R with coefficients in G by the following:

i. An = R[[x1, . . . , xn]], where we set A0 = R.

ii. The coface operators δin : An → An+1 are defined by δ0n(f)(x1, . . . , xn+1) =
f(x2, . . . , xn+1), δ

n+1
n (f)(x1, . . . , xn+1) = f(x1, . . . , xn) and δin(f)(x1, . . . , xn+1) =

f(x1, . . . , xi +F xi+1, . . . , xn+1) for i otherwise.

iii. The codegeneracy operators σi
n : An → An−1 are given by σi

n(f)(x1, . . . , xn−1) =
f(x1, . . . , 0, . . . , xn−1) for 1 ≤ i ≤ n where the ith entry is replaced by a
zero.

It is not hard to check that these maps define a cosimplicial object. The
Lubin-Tate complex of R will be the associated alternating sign complex. Let
LT ∗(R,G) or LT ∗(R,F ) both denote the graded cohomology ring of this com-
plex, called the Lubin-Tate cohomology of R with coefficients in G or F respec-
tively (where the use G or F will depend on context).

Remark 1. Note that the above is just an extension of the second cohomology
ring of a formal group law constructed in [11]. We are primarily in this note
interested in LT ∗(R,Ga), and primarily in degrees 2 and 3. As such, the only
advancement we have past [11] is some investigation of the third degree, and
perhaps firmer theoretical footing. Jonathan Lubin suggested that we avoid
naming things after mathematicians, so we might want to call it something
something like the “formal cohomology” of R, though this is still not a satisfying
name.

Remark 2. Also notice that LT ∗(R,G) can be realized as the Hochschild co-
homology of G with coefficients in the formal affine R-line (in the sense of II,
§3, no. 4.4 of [2]), where the “action” G× A1

R → A1
R is the trivial one.
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2 n-buds

Definition 2. We define an n-bud over a commutative ring R to be a finite
power series f ∈ R[[x, y]] such that:

i. f is of total degree n or less.

ii. f(f(x, y), z)− f(x, f(y, z)) ≡ 0 modulo degree n+ 1 terms (associativity).

iii. f(x, 0) = x and f(0, y) = y (unitality).

We say that f is also commutative if f(x, y) = f(y, x).

Definition 3. A morphism between an two n-buds f and g in R[[x, y]] is a
power series u(x) ∈ R[[x]] such that u(f(x, y)) ≡ g(u(x), u(y)) modulo degree
n+1 terms. If the coefficient of x in u is invertible (resp. equal to 1) in R, u is
an isomorphism (resp. strict isomorphism).

Notation 1. For brevity, let Ass(f) = f(f(x, y), z)−f(x, f(y, z)) and Assn(f)
be the homogeneous degree n part of Ass(f).

Remark 3. Note that even if the homogeneous degree k part of f is trivial,
Assk(f) may not be trivial.

Theorem 1 (Lazard). If f ∈ R[[x, y]] defines an n-bud, then there exists an
n + 1-bud f ′ ∈ R[[x, y]] such that f ′ ≡ f modulo degree n + 1 if and only
if Assn+1(f) = δ2h, for some h ∈ R[[x, y]]. Note that since f is an n-bud,
Assk(f) = 0 for all k < n+ 1, so h must be of homogeneous degree n+ 1 (and
evidently a finite polynomial). Moreover, f + h = f ′.

Proof. Using the Composition Lemma (I.9.10) of [8], we have that Assn+1(f +
h) = Assn+1(f) − δ2h (this is also formula II.5.7 of [8]). Thus if there is an
n + 1-bud extending f , it must differ in degree n + 1 from f by some finite
polynomial h, and if f + h does indeed define an n+1-bud, Assn+1(f + h) = 0.
Hence Assn+1(f) = δ2h if f can be extended. If, on the other hand (and this
is the interesting part) Assn+1(f) = δ2h, then Assn+1(f + h) = Assn+1(f) −
δ2h = 0. Note however, we have not shown that for a commutative n-bud with
Assn+1(f) = δ2h for some h that h is symmetric. In other words, we have shown
that every commutative n-bud can be extended, but not that every extension
is commutative. If R is torsion free or reduced, every bud is commutative, but
in general the non-commutative buds (thence non-commutative formal group
laws) deserve greater investigation.

Remark 4. We will later see that Assn+1(f) is always a coboundary when f is a
commutative n-bud. Thus, for such an n-bud, determining which coboundaries
Assn+1(f) can be simultaneously determines all possible extensions of f to an
n+ 1-bud.
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Theorem 2. Let R[[x]] ∋ u(x) : f → g be a morphism of n-buds, and u′ a
power series such that u′ ≡ u modulo degree n+1 terms. Let ∆k(r)(f, g) denote
the homogeneous degree k part of the difference r(f(x, y))−r(u(x), u(y)) for any
power series r ∈ R[[x]]. Hence if u : f → g is a morphism of n-buds, ∆n(u) = 0.
Then ∆n+1(u

′)(f, g) = ∆n+1(u)(f, g) + δ1h for some h ∈ R[x]. In other words,
u can be lifted to a morphism of n+ 1-buds if and only if ∆n+1(u)(f, g) = δ1h.

Proof. Similar to the proof of Theorem 1, and explained in [8].

Corollary 1. Suppose that two n+1-buds f ′ and f ′′ extend an n-bud f . Then
f ′ and f ′′ are isomorphic if and only if f ′ − f ′′ = δ1h for some h ∈ R[x].

Proof. Suppose f ′ − f ′′ = δ1h. Note that the power series x ∈ R[[x]] is an
automorphism of f . Hence, using the terminology of Theorem 2, we see that
∆n+1(x)(f

′, f ′′) is equal to the degree n+1 term of f ′−f ′′, which is δ1h. Thus,
by the preceding theorem, we have a u′ which lifts x to a morphism of n+1-buds
between f ′ and f ′′. Moreover, u′ is an isomorphism, since it agrees with x below
degree n+ 1.

Now, suppose that ∆n+1(x)(f
′, f ′′) = δ1h. Then the power series x + h

determines a lift of x to an isomorphism between f ′ and f ′′.

Theorem 3. For a cochain f ∈ R[[x, y]], Assn(f) is a cocycle in the Lubin-Tate
complex.

Proof. See [8], II, 5.10.

Corollary 2. If LT 3(R,Ga) = 0 then every n-bud is extendible to an n+1-bud.

Remark 5. It does not seem to me that this is going to be true very often.
However, a weaker result will still imply that every commutative n-bud is ex-
tendible. Note that were the antecedent of the preceding corollary satisfied,
every n-bud, regardles of commutativity, would be extendible.

Theorem 4. If f ∈ R[x, y, z] is a polynomial cocycle such that f(x, y, z) −
f(x, z, y)+f(z, x, y) = 0, f is the coboundary of a symmetric cochain h ∈ R[x, y].

Proof. This is essentially a parameterized version of the same theorem for cocy-
cles in group cohomology given by Eilenberg and Mac Lane in [3], Theorem 26.3.
What Eilenberg and Mac Lane show is that the the relative cohomology (with
any coefficients) of the pair (BG, im(σ)) is trivial, where σ : BG × BG → BG
is the shuffle product on cells. In other words, every cocycle is cohomologous to
a cocycle which is a coboundary away from shuffle products. This shows that a
cocycle g : G×G×G → G is a coboundary if g(x, y, z)−g(x, z, y)+g(z, x, y) = 0.
The fashion in which they construct this coboundary indicates that it must be
the coboundary of a symmetric cochain.

Now, a polynomial cocycle f ∈ R[x, y, z] determines and is determined by
a map R[x] → R[x, y, z] ∼= R[x] ⊗R R[y] ⊗R R[z], or dually, a morphism of
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presheaves Ga × Ga × Ga → Ga which functorially induces a group cohomol-
ogy cocycle on the underlying additive group of any R-algebra to which those
presheaves are applied. Hence by applying Eilenberg and Mac Lane’s argument
objectwise (i.e. showing the same statement for the cohomology sheaves of Ga),
we obtain the theorem for polynomial cocycles.

Corollary 3. Every commutative n-bud is extendible to a commutative n+ 1-
bud.

Proof. Let f define a commutative n-bud over R. Then we have that Assn+1(f)
is a 3-cocycle in the Lubin-Tate complex of R. If f is commutative, it is imme-
diate that Assn+1(f) satisfies the conditions of Theorem 4. Hence by Theorem
1, we have the corollary. Note that this relies on the commutativity of f .

3 A Discussion of Commutativity

Some care must be taken in asking about commutative extensions of an arbitrary
n-bud (which for the extent of this section will be called f). In his original
investigation of n-buds, Lazard considered an n-bud to be a class of power
series which agreed modulo degree n + 1 terms. Here, however, we have taken
an n-bud to simply be the power series which is in fact zero above degree n.
Note that an extension of f , using our definition, will be commutative if the
cochain h determining it is symmetric. However, suppose we used Lazard’s
definition. We might consider the power series g = x+ y + xy + xy2 + 2x2y to
be a “representative” of our 2-bud f = x + y + xy (suppose R = Z). In this
case, Ass3(g) = (4 − 2)xyz = 2xyz. Thus, using the formula Ass3(f) = δ2(h),
we need to find a cochain h such that δ2(h) = 2xyz. A cochain that satisfies
this condition is h = 2xy2+x2y. Adding h to f , we get the commutative 3-bud
f ′ = x + y + xy + 3(xy2 + x2y), though the cochain by which this extension
was obtained was not symmetric. And indeed, the obstruction in this case will
not satisfy the conditions of Theorem 4. However, we can remedy the situation
with the following:

Proposition 1. The extensions of an n-bud f determined by a polynomial
which is truncated above degree n are in bijection with the extensions of the
same n-bud determined by any other power series. Moreover, this bijection
preserves commutativity and isomorphism classes of extensions (i.e. it is a
groupoid isomorphism!).

Proof. Let f be a power series
∑

∞

i=0
aijx

iyj determining an n-bud such that
aij = 0 whenever i + j > n. We will show that symmetric cochains deter-
mining extensions of f are in bijection with cochains determining commutative
extensions of any other representative of our chosen n-bud. Let g be another
representative, let g|k (resp. f |k) be the homogeneous degree k part of g (resp.
f), and let h be a symmetric cochain extending f . Let f ′ be the commuta-
tive extension of f and g determined by adding h to f , and assume that f ′
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is truncated above degree n + 1 (this is not integral to the proof but simpli-
fies notation). Then we can deduce that f ′ = g + h − g|n+1 and thus that
Assn+1(g) = δ2(h − g|n+1) = δ2(h) − δ2(g|n+1). In other words, there is a set
bijection

τ :

{

symmetric cochains
extending f

}

→

{

cochains determining
commutative extensions of g

}

given by subtraction of g|n+1, with inverse being addition of same. It is also
clear that this bijection respects isomorphism classes of extensions (in the sense
of Theorem 2) and can be extended to non-commutative extensions.

Hence we can be reassured that determining extensions of an n-bud (in
the sense of Lazard) is equivalent to determining extensions of some specific
representative thereof. Moreover we now have the following:

Corollary 4. Isomorphism classes of commutative extensions of an n-bud f are
in bijection with homogeneous degree n + 1 symmetric polynomials h ∈ R[x, y]
such that δ2(h) = Assn+1(f), modulo δ1(R[x]).

Theorem 5 (Lazard). Any two commutative extensions of an n-bud f to n+1-
buds f ′ and f ′′ differ by a symmetric 2-cocycle in R[x, y].

Proof. [8]

Corollary 5. The set of extensions of a commutative n-bud f is a torsor for
the cohomology group LT 2(R,Ga).

4 Low degree computations

The previous sections allow us to determine an algorithm for computing the
moduli of extensions of n-buds.

Example 1. Let
f = x+ y + a11xy

define a 2-bud over a ring R, with a11 ∈ R (note that every 2-bud is commuta-
tive). We can compute by hand that Ass(f) = 0, so we have that Ass3(f) = 0.
In other words, any 2-cocycle h(x, y) = b12xy

2 + b21x
2y ∈ R[x, y] determines an

extension to a three bud f +h. So we are interested then in classifying cocycles
in 2 variables. Note that

δ2(h) = (2b12 − 2b21)xyz,

so we’re attempting to solve the equation 2b12−2b21 = 0 over R. Thus, if R has
no 2-torsion, every 3 bud must be commutative. However, if R has 2-torsion,
then choosing b12 and b21 to be 2-torsion elements will also produce a cocycle
which need not be symmetric. So we see that commutative extensions are in
bijection with R, but arbitrary extensions involve choosing an element of the
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torsion free part of R (possibly zero!) and two elements of the 2-torsion of R.
Note that there is a group structure on extensions (just add coefficients) since
δ2 is additive.

We also note here that the above analysis implies that every single commu-
tative extension of the multiplicative 2-bud (also an honest group scheme!) to a
commutative k > 2-bud is determined by the choice of a homogeneous degree k
symmetric 2-cocycle. And since isomorphic extensions differ by coboundaries,
the extensions of the x+y+ cxy are just the cohomology classes of LT 2(R,Ga).

Example 2. Now suppose we have a 3-bud

f(x, y) = x+ y + a11xy + a12xy
2 + a21x

2y

and we want to determine ways that it can be extended to a 4-bud. We calculate

Ass4(f) = (2a11a21)x
2yz + (a11a21 − a11a12)xy

2z + (2a11a12)xyz
2

Thus we must find h ∈ R[x, y] such that δ2h = Ass4(f). Now, an arbitrary
normalized 2-cochain of homogeneous degree 4 is of the form

h(x, y) = b13xy
3 + b22x

2y2 + b31x
3y

and has coboundary

δ2(h) = (−3b31 + 2b22)x
2yz + (3b13 − 3b31)xy

2z + (3b13 − 2b22)xyz
2.

Thus to determine possible extensions we see that we have to solve the system
of equations:

3b31 − 2b22 = 2a11a21

3b31 − 3b13 = a11a21 − a11a12

2b22 − 3b13 = −2a11a12.

It should be clear that if the ring R has no 2-torsion or 3-torsion elements
then a choice of any one of b22, b13 or b31 determines the other two. Notice that
we have not yet said anything about f or h being commutative. An interesting
example is the case in which R has 2-torsion and we are interested in extending
a non-commutative 3-bud, for instance f(x) = x + y + xy + cxy2, where c
is a 2-torsion element of R. Then we see that we must simultaneously have
b13 = b31 = 0 and 0 = 3b31 − 3b13 = −c, hence no such extension can exist.

There are obviously many cases to be considered further, e.g. if we assume
that f is commutative, or if we assume that R is 3-torsion. In the case that f
is non-commutative and R is 3-torsion, it’s clear that rather strong conditions
must be put on f to extend it to a 4-bud.

Example 3. Lastly we consider extending a 4-bud

f(x, y) = x+ y + a11xy + a12xy
2 + a21x

2y + a13xy
3 + a22x

2y2 + a31x
3y
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to a 5-bud. We first compute:

Ass5(f) = (2a221 + 3a11a31)x
3yz

+ (a211a21 + a221 + 2a21a12 − a11a22 + 6a11a31)x
2y2z

+ (2a11a31 − 2a11a13+)xy3z

+ (−a211a12 − a212 − 2a21a12 + a11a22 − 6a11a13)xy
2z2

+ (−2a212 − 3a11a13)xyz
3

and

δ2(h) = (2b32 − 4b41)x
3yz

+ (−6b41 + 3b23)x
2y2z

+ (4b14 − 4b41)xy
3z

+ (−3b32 + 3b23)x
2yz2

+ (6b14 − 3b32)xy
2z2

+ (4b14 − 2b23)xyz
3

So we get a system of equations we need to solve:

4b41 − 2b32 = 2a221 + 3a11a31

6b41 − 3b23 = a211a21 + a221 + 2a21a12 + 6a11a31 − a11a22

4b41 − 4b14 = 2a11a31 − 2a11a13

3b32 − 3b23 = 0

3b32 − 6b14 = −a211a12 − a212 − 2a21a12 − 6a11a13 + a11a22

2b23 − 4b14 = −2a212 − 3a11a13

Again, if we’re working over a torsion free ring, a choice of a single bij
determines the rest.

5 Computations in the non-smooth case

Now we might be interested repeating the above process for a slightly more
interesting affine scheme, for instance let A = R[x, y]/(x3 − y2) so that X =
Spec(A) is a curve with a cusp at the origin. As such, one might hope that
there are non-trivial obstructions in this case (even assuming commutativity).
First we recall some definitions:

Definition 4. A 2-dimensional formal group law R[[x, y]] → R[[x1, x2, y1, y2]] is
a pair of 4 variable power series F1(x1, x2, y1, y2) and F2(x1, x2, y1, y2) satifying:
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i. F1(x1, x2, y1, y2) ≡ x1 + y1 and F2(x1, x2, y1, y2) ≡ x2 + y2 modulo terms of
degree greater than 1.

ii. F1(F1(x1, x2, y1, y2), F2(x1, x2, y1, y2), z1, z2) = F1(x1, x2, F (y1, y2, z1, z2), G(y1, y2, z1, z2)),
and F2(F1(x1, x2, y1, y2), F2(x1, x2, y1, y2), z1, z2) = F2(x1, x2, F1(y1, y2, z1, z2), F2(y1, y2, z1, z2)).

Definition 5. Suppose (F1, F2) defines a 2-dimensional n-bud. Let Ass1n+1(F1, F2)
be the degree n+ 1 part of the difference

F1(F1(x1, x2, y1, y2), F2(x1, x2, y1, y2), z1, z2)−F1(x1, x2, F (y1, y2, z1, z2), G(y1, y2, z1, z2))

and let Ass2n+1(F1, F2) be the degree n+ 1 part of the difference

F2(F1(x1, x2, y1, y2), F2(x1, x2, y1, y2), z1, z2)−F2(x1, x2, F1(y1, y2, z1, z2), F2(y1, y2, z1, z2)).

Lemma 1. Suppose (F1, F2) is a 2-dimensional n-bud. And let (F1+h1, F2+h2)
extend (F1, F2). Then we have that

Ass1n+1(F1 + h1, F2 + h2) = Ass1n+1(F1, F2)− δ′h1,

and

Ass2n+1(F1 + h1, F2 + h2) = Ass2n+1(F1, F2)− δ′h2,

where for h ∈ R[x1, x2, y1, y2],

δ′h(x1, x2, y1, y2, z1, z2) = (h(y1, y2, z1, z2)− h(x1 + y1, x2 + y2, z1, z2)

+ h(x1, x2, y1 + z1, y2 + z2)− h(x1, x2, y1, y2).

Proof. This again follows directly from the Composition Lemma in [8].

Corollary 6. Identically to the discussion in the preceding sections, we know
that Ass1n+1(F1, F2) and Ass2n+1(F1, F2) are the obstructions to extending a
given 2-dimensional n-bud (F1, F2).

Thus we’d like to define a cohomology theory in which these obstructions
live. Indeed, it’s basically the cohomology theory given in the first section with
an extra pair of variables. In other words, we have the cochain complex

R[[x, y]] → R[[x, y, z, w]] → R[[x, y, z, w, s, t]] → . . .

where the first coboundary is f(x, y) 7→ f(z, w)− f(x+ z, y+ w) + f(x, y) and
the second is f(x, y, z, w) 7→ f(z, w, s, t)− f(x+ z, y+w, s, t)+ f(x, y, z+ s, w+
t)− f(x, y, z, w), and so forth in higher degrees.

Thus, the obstruction to extending a 2-dimensional n-bud clearly lives in
this complex, and the story goes exactly the same.

The following example was pointed out to me by Paul VanKoughnett.
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Example 4 (Cuspidal Â2). The additive formal group law in two dimensions
is given by the pair of of power series:

F1(x1, x2, y1, y2) = x1 + y1 and F2(x1, x2, y1, y2) = x2 + y2

It’s not hard to check that is satisfies the necessary conditions. Moreover,
it’s commutative. However, suppose we wish to have the additive formal group
define a cogroup structure at a cusp:

R[[x1, x2]]/(x
2
1 − x3

2) → R[[x1, x2]]/(x
2
1 − x3

2)⊗̂R[[y1, y2]]/(y
2
1 − y32)

Then we are immediately confronted by the issue that the additive group is
not even well defined. For instance, our group law should take “zero” to “zero.”
Let f(x1, x2) = x2

1 − x3
2 ≡ 0.

Then

f(x1 + y1, y2 + y2) = (x1 + y1)
2 − (x2 + y2)

3

= x2
1 + 2x1y1 + y21 − x3

2 − 3x2
2y2 − 3x2y

2
2 − y32

≡ 2x1y1 − 3(x2
2y2 + x2y

2
2).

The final equivalence above is given by reducing modulo the relations x2
1 = x3

2

and y21 = y32 . If we reduce modulo terms of degree greater than 1, we see that
the additive group defines a cogroup structure (i.e. a group structure on the
tangent plane of the given cusp at the origin), but we cannot necessarily extend
it to higher degree terms. Note that if we are interested in 2-buds, we have to
solve the equation 0 = 2x1y1. Hence, if our ring is all 2-torsion, the additive
group defines what one might call a “reduced 2-bud” on the given cusp (i.e. a
group structure on the second degree approximation of the given cusp at the
origin).
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