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1 Formal Projective Geometry

In 1910, Oswald Veblen introduced an axiomatic approach to (projective) geometry [Veb07,VY08] thought
of as the data of two sets (G,L ⊆ P(G)) satisfying certain properties that made the set L behave like the
set of lines in a the set G of points.

In 1943, Walter Prenowitz reinterpreted Veblen’s (and Young’s) approach in terms of what he called a
multigroup. This is a set G along with a function ℓ : G × G → P(G) satisfying certain conditions. We are
supposed to think of ℓ(x, y) as the unique line containing x and y. Prenowitz showed that all projective
geometries in the sense of Veblen gave multigroups but that multigroups were slightly more general. In
Veblen’s geometries a line was required to contain at least three points (the idea being of course that in any
kind of reasonable projective geometry one shouldn’t have a “line” whose only points are 0 and ∞). The
“projective geometries” associated to Prenowitz’s multigroups only required their lines to have at least two
points. With this adjustment, the two notions are entirely equivalent.

Meanwhile, in the 1930’s, both Hassler Whitney and Takeo Nakasawa were introducing the ideas that
would come to be referred to as matroids as a common generalization of both linear algebra/projective
geometry and graph theory [Whi35,NK09]. There are many equivalent definitions of matroids (cf. “crypto-
morphisms”) but the one which is the most efficient for this talk is the following:

Definition 1. A simple pointed matroid is a set Z equipped with a function C : P(Z) → P(Z), called a
closure operator and a distinguished element 0 ∈ Z satisfying the following conditions:

1. For all X ⊆ Z, X ⊆ C(X).

2. For all Y ⊆ X ⊆ Z, C(Y ) ⊆ C(X).

3. For all X ⊆ Z, C(C(X)) = C(X).

4. For all x, y ∈ Z and X ⊆ Z, if x /∈ C(X) and x ∈ C(X ∪ {y}) then y ∈ C(X ∪ {y}).

5. C(∅) = {0} and C({x}) = {x, 0}.

The category whose objects are simple pointed matroids and whose morphisms are functions that preserve
base points and commute with closure operators is denoted sMat∗.

Inside of sMat∗ is a full subcategory of objects called projective geometries in [NR23] (and they are,
indeed, equivalent to the classical axiomatic characterizations of projective geometries). We’ll write this full
subcategory as Proj.

Perhaps following in Prenowitz’s footsteps, we might now ask if these versions of projective geometries
can be realized by some kind of hyperoperation. For this we need a slightly more general notion than
Prenowitz’s multigroups:

Definition 2. A weakly unital commutative hypermagma is a set M along with a distinguished element
e ∈ M and a function ⋆ : M ×M → P(M) satisfying the following properties:

1. For all x, y ∈ M , x ⋆ y = y ⋆ x.

2. For all x ∈ M , x ∈ (x ⋆ e) ∩ (e ⋆ x).

There is a category of weakly unital commutative hypermagmas with morphisms functions that preserve
base points and such that f(x ⋆ y) ⊆ f(x) ⋆ f(y). Denote this category CHMagu.
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Proposition 3. [NR23] Let (Z,C, 0) be a simple pointed matroid. Then there is a weakly unital commutative
hypermagma Z̄ = (Z, ⋆, 0) with operation given by

x ⋆ y =

{
C({x, y}) x ̸= y

{x, 0} x = y

Nakamura and Reyes prove the following:

Theorem 4. [NR23] The construction Z 7→ Z̄ extends to a faithful functor sMat∗ → CHMagu. When
restricted to Proj ⊆ sMat∗, this functor is fully faithful.

So, similarly to Prenowitz, we can think of CHMagu as being a (vast) generalization of projective
geometries which happens to include (simple, pointed) matroids, which are independently interesting objects
because of their connections to graph theory, combinatorics, number theory, and other areas of mathematics.

2 Hyperoperations, Γ-sets and F1

Around the same time as Prenowitz, Jacques Tits [Tit11] was noticing that certain patterns and formulae
in projective geometry (in the usual sense) over finite fields seemed to have alarmingly similar analogues in
the combinatorics of finite sets. These analogues seemed to, in many cases, be obtained by taking the copy
of q that appeared in formulae for projective geometry over Fq, and replacing it with 1. He hypothesized
that combinatorics could be thought of as something like projective geometry over a field of characteristic
one. Of course this doesn’t make sense on the face of it, but the general idea is still compelling. The basic
dictionary looks something like

Fq 7→ “F1”

Fn
q 7→ {1, 2, 3, . . . , n}

GLn(Fq) 7→ Σn

Of course the second line above suggests that F1 should just be a one element set, but I wrote F1 in scare
quotes to indicate that it will necessarily need to have some structure besides being a singleton set, if we’re
going to get anywhere with it.

Later on, this idea gained even more traction when Kapranov, Smirnov and Manin [Smi92, Man95]
suggested that if there were a field of characteristic one, call it F1, then Spec(Z) would be a curve over
Spec(F1) and so Deligne’s proof of the Weil conjectures for function fields might be replicable in such a
setting (thereby proving the Riemann Hypothesis).

To actually use F1 for any of this however, one must actually have an actual mathematical object called
F1 to study, or at the very least a category of modules or vector spaces over it. There are many models
for F1 that have been floated since Tits’ seminal work, but for this talk I’m interested in the one used by
Connes and Consani (in their quest to prove the Riemann Hypothesis) [CC16].

Definition 5. Let Fin∗ be the skeleton of the category of finite pointed sets and pointed maps spanned by
the objects ⟨n⟩ = {0, 1, 2, . . . , n}, where 0 is taken to be the base point. Let Set∗ be the category of all finite
pointed sets and pointed maps between them. Then we define the category of F1-modules to be

ModF1
= Fun∗(Fin∗,Set∗)

where the notation Fun∗ denotes functors which take ⟨0⟩ to a singleton set.
We take F1 itself to be the inclusion functor Fin∗ ↪→ Set∗. This category is equipped with the Day

convolution monoidal structure and, indeed, F1 is the monoidal unit therein, so this category is a category
of modules over the object we’ve called F1.

Remark 6. Note that in the above definition F1 is the functor corepresented by the pointed set {0, 1}. This
is consistent with a number of past approaches to F1 which identify it as the set {0, 1} with some additional
structure.
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In [CC16], it is shown that this category contains, or at least admits functors from, lots of interesting
structures. For instance, the generalized rings of Durov (a.k.a. Lawvere theories) give examples [Dur07],
as well as commutative monoids, and finite sets themselves (via the coYoneda embedding). There is also
a way to think of certain combinatorial structures, encoded as commutative monoids in the span category
Span(Set∗), as F1-modules [CMS23]. Being symmetric monoidal, ModF1

admits a theory of algebras and
the inclusion from commutative monoids is lax monoidal, therefore it takes (semi)rings to F1-algebras. This
allows one to think of certain structures from tropical geometry and Arakelov geometry as F1-algebras as
well.

Of particular interest to us is the way in which one can encode hyperstructures in ModF1
. This is

important to Connes and Consani because they want to understand their adele class space AK/K×, (which
is naturally a hyperring) as an F1-algebra.

To understand functors Fin∗ → Set∗, it will be helpful to have some names for some of the maps in Fin∗.

Definition 7. Write ⟨n⟩ = {∗, 1, 2, . . . , n} for the objects of Fin∗. Then write:

1. ρi : ⟨n⟩ → ⟨1⟩ for the map given by

ρi(j) =

{
1 i = j

0 i ̸= j

2. µ : ⟨2⟩ → ⟨1⟩ for the map given by µ(1) = µ(2) = 1.

3. e : ⟨0⟩ → ⟨1⟩ for the uniqe pointed map.

Definition 8. Let X : Fin∗ → Set∗. Write

Sn : X⟨n⟩ →
∏
n

X⟨1⟩

for the map induced by the maps X(ρi) : X⟨n⟩ → X⟨1⟩ defined above.

Definition 9. Let A be a commutative monoid. We (roughly) define a functor HA : Fin∗ → Set∗ by
setting HA⟨n⟩ = An, defining HA(ρi) to be the various projection maps from the product, HA(µ) to be the
addition map of A (as well as higher copies of µ obtained by taking coproducts of it with identities), HA of
permutations to be permutations of the coordinates, and HA(e) is the unit map {∗} → A.

Proposition 10. Let X be a functor Fin∗ → Set∗. Then the maps Sn are isomorphisms if and only if
X ∼= HA for some commutative monoid A. Moreover, there is a fully faithful functor H : CMon → ModF1 .

The condition of the Sn maps being isomorphisms is often called the “Segal condition.” But Connes and
Consani do not require that their objects satisfy the Segal condition. They consider arbitrary functors. The
reason for this becomes clear if we consider the following diagram obtained by applying a functor X to Fin∗:

X⟨2⟩ X⟨1⟩ ×X⟨1⟩

X⟨1⟩

X⟨0⟩

Xµ

Xe

S2

If S2 is an isomorphism then we can take its inverse to obtain the “addition” X⟨1⟩ ×X⟨1⟩ ∼= X⟨2⟩ Xµ−−→
X⟨1⟩, and one checks that Xe is a unit for this operation. In the case that S2 is not an isomorphism, we can
still take its “inverse,” it’s just that the inverse takes pairs (x, y) to subsets of X⟨2⟩. Therefore the composite
Xµ ◦ S−1

2 is a hyperoperation X⟨1⟩ ×X⟨1⟩ → P(X⟨1⟩). By a relatively straightforward diagram chase, one
checks that this defines a functor:

Proposition 11 (B.-Nakamura). There is a functor T : ModF1
→ CHMagu which takes X to the set X⟨1⟩

with the hyperoperation Xµ ◦ S−1
2 and weak unit Xe.
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More importantly, we can produce F1-modules from weakly unital commutative hypermagmas.

Theorem 12 (B.-Nakamura). The functor T has a fully faithful right adjoint Ĥ : CHMagu → ModF1
which,

when restricted to CMon, is naturally isomorphic to the “Eilenberg-MacLane” functor H.

Corollary 13. The composite of Ĥ with the Nakamura and Reyes’ functor on simple pointed matroids gives
a faithful inclusion sMat∗ → ModF1 and a fully faithful inclusion Proj ↪→ ModF1

The functor is somewhat complicated, so I won’t define it here, but at low levels it’s easy to define. If
(M,⋆, e) is a weakly unital commutative hypermagma then on the first objects we get

ĤM⟨0⟩ = {∗}
ĤM⟨1⟩ = M

ĤM⟨2⟩ = {(a, b, c) ∈ M3 : b ∈ a ⋆ c}

For morphisms, ĤM(ρ1), ĤM(ρ2) : ĤM⟨2⟩ → ĤM⟨1⟩ are given by projection onto the left and right coor-
dinates and µ : ĤM⟨2⟩ → ĤM⟨1⟩ is given by projection on the center coordinate. Of course ĤM(e) is the
morphism that picks out e ∈ M . It’s not difficult to see that TĤM = M .

Remark 14. The functor T is very close to the pullback functor Fun∗(Fin∗,Set∗) → Fun∗(Fin
≤2
∗ ,Set∗)

where Fin≤2
∗ denotes the full subcategory of Fin∗ spanned by the objects ⟨0⟩, ⟨1⟩ and ⟨2⟩. This is not

surprising, as the information that T isolates is entirely contained in Fin≤2
∗ . One can then show that the

functor Ĥ is essentially the same as right Kan extending an object of Fun∗(Fin
≤2
∗ ,Set∗) along the inclusion

Fin≤2
∗ ↪→ Fin∗.
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